Detección Temprana de Incendios en Áreas Forestales con Inteligencia Artificial- Parte I

Quito. 2021

¿Sabes cuántas hectáreas se queman cada año por causa de incendios forestales? ¿Sabías que producto de esto muchas especies dejan su hábitat en busca de un nuevo hogar?¿Me creerías si te dijera que podemos utilizar la tecnología sobre todo la Inteligencia Artificial para disminuir el impacto de los incendios forestales? En este artículo, utilizaremos la Inteligencia Artificial para detectar de forma temprana incendios en áreas forestales.

Yoal igual que tú estaba un poco escéptico al inicio, pero déjame contarte cómo el ser humano puede ayudarse de la tecnología para frenar estos atentados contra la madre naturaleza. Por eso te invito a leer nuestra idea de cómo detectar incendios desde sus etapas muy tempranas para poder frenarlos y así evitar grandes desastres. ¿Te imaginas un mundo donde podamos minimizar este tipo de incendios forestales? Pues aquí colocamos casi todo lo que necesitas para llevar a cabo este proyecto y te conviertas en un defensor de la Pachamama.


Primero pasos

La idea del proyecto para detectar incendios forestales mediante Inteligencia Artificial comenzó una tarde en el taller que llevábamos en Saturday AI y con los compañeros: Luis Marcelo Viteri Aguilar, Danilo Josue Erazo Quinaluisa, Jonathan Alejandro Zambrano Mejía y Wilfredo Martel; decidimos hacer frente a esta problemática.


Idea General

La idea del proyecto de Detección Temprana de Incendios Forestales es utilizar la Inteligencia Artificial con ayuda de un Dron compuesto con un GPS y una cámara para que escaneen áreas forestales y en caso de detectar incendio envíen la alarma a un servidor principal que se encargará de notificar a los bomberos y comunidades aledañas informándoles con una foto del sector, la posición en un mapa y el porcentaje de estimación con la finalidad de evitar que se propague el incendio y arrase con la flora y fauna del sector.

Esquema del funcionamiento


Problemática

Enel 2020, más de 5.5 millones de hectáreas fueron devastadas por incendios forestales a nivel mundial teniendo un gran impacto sobre la flora y fauna salvaje que habitaba en esta área.

En Ecuador, en el mismo año se perdieron aproximadamente 23.462 hectáreas y debido a la estructura montañosa de los lugares es complicado para los bomberos llegar a tiempo. El fuego devastador devoró todo a sus alrededores y tuvieron que pasar en el mejor de los casos semanas para mitigar el incendio y en el peor de los casos meses.

Ante este alarmante problema con impacto social y ambiental se pensaron soluciones que ayuden a detectar a tiempo los incendios forestales, es entonces cómo surge la idea de fusionar la Inteligencia Artificial (de ahora en adelante I.A.) con un dron para la detección temprana de incendios en las áreas forestales de nuestro país. La idea consiste en entrenar un modelo de I.A. (detectar fuego en cualquier superficie) que interactúe con el dron el cual dispondrá de una cámara y un GPS, por lo tanto, en tiempo real se sabrá la posición del incendio y enviará una alarma a los bomberos para su mitigación.


Fase de Ejecución

Para llevar a cabo la ejecución de este grandioso prototipo, que desde ya se observa a la distancia los beneficios, se realizó en cinco fases:

  1. Fase de recolección de datos (dataset)
  2. Investigación previa de modelo Pre-entrenados de I.A.
  3. Reentrenamiento y Validación del modelo
  4. Deployment del modelo
  5. Desarrollo de un sitio Web para presentación del Prototipo

Antes de continuar se aclara que la fase de integración con el dron, el servidor, notificación a las comunidades y bomberos queda pendiente para la segunda parte de este artículo.


1. Fase de recolección de datos e Investigación de modelos para Clasificación de Imágenes

Esta fase se enfocó en la recolección de imágenes de incendios forestales ocasionados alrededor del mundo y en nuestro país. Se logró obtener un total de 250 MB de información la cual se empleará como entrada para el aprendizaje de nuestro modelo.

Una vez ya obtenido el dataset, como una tarea en paralelo se realizó una investigación de modelos de I.A. clasificadores de imágenes y el que escogimos debido a su efectividad fue Yolo v5. Esto a la vez significa que se tiene que realizar un proceso de anotación que consiste en dar las coordenadas del segmento a caracterizar dentro de una imagen.

En otras palabras, explicaremos lo que implica en nuestro dataset el utilizar Yolo v5:

1. Se debe anotar o indicar los segmentos a aprender dentro de la imagen. En nuestro caso son poner las coordenadas donde hay fuego y de esta manera la herramienta Yolo V5 pueda aprender y obtener patrones de diferenciación. Para saber más sobre el proceso de anotación de Yolo v5 se recomienda echar una lectura a este enlace para despejar sus dudas.

2. Para el proceso de anotación se utilizó una herramienta de mucha ayuda llamada HyperLabel que la encontramos en enlace.

3. Una vez que se obtuvo las anotaciones, que básicamente es un archivo xml que hace alusión a la imagen con sus coordenadas, se procede a generar un archivo para el formato de Yolo v5. Para este proceso se siguió el código github ai-coodiantor.

Con estos pasos ya ejecutados, se tiene preparado el entrenamiento personalizado con nuestro propio dataset.


2. Reentrenamiento y Validación del modelo

Para la parte de entrenamiento del modelo ya pre-entrenado se utilizó Google Colab Pro con GPU v100 y un tiempo estimado de 12 horas para su finalización. Al finalizar el proceso se obtuvo como resultado del entrenamiento un modelo de inferencia con extensión .pt. En nuestro caso, nuestro archivo fireModel.pt que servirá de insumo para inferir sobre imágenes de prueba. Antes de avanzar hay que aclarar que este modelo una vez que pase todas las pruebas, se pondrá en un dron mediante una placa Nvidia Jetson TX2 para su procesamiento en tiempo real, en donde cuando se detecte algún indicio de incendio forestal se proceda a enviar la alarma a instituciones tales como: Bomberos, Comunidades aledañas etc.

A continuación, en la Ilustración 2 se muestra el código que se utilizó para entrenar el modelo de detección de incendios.

Modelo de entrenamiento de Yolov5


3. Deployment del modelo

Una vez que se obtuvo el modelo fireModel.pt se procedió a realizar un pequeño aplicativo en Python utilizando Flask como servidor de aplicaciones. Es decir, en Flask se tendrá una API que recibirá la imagen a inferir y el modelo fireModel.pt nos retornará el resultado y la sección donde se ha detectado el incendio en la foto con su respectivo porcentaje de predicción. A continuación, en la Ilustración 3 se muestra el código que realiza la descripción previa.

app.py

Enlace del código.

A continuación, en la Ilustración 4 se muestra la prueba del modelo usando Postman.

Resultado de la Inferencia del modelo entrenado


4. Desarrollo de un sitio Web para presentación del Prototipo

Para nuestro prototipo se desarrolló una Landing Page que permite cargar una imagen la cual será enviada al servidor para su procesamiento para que una vez terminada la inferencia de la imagen, los resultados se envíen al cliente con las posiciones de donde se ha detectado el incendio y el porcentaje de predicción.

Las herramientas utilizadas para la página web son:

1. Angular 2+

2. Angular Material

Por otro lado, para pintar los resultados de la inferencia se utilizó canvas para posteriormente dibujar las coordenadas dentro de la imagen cargada. Vale la pena mencionar que, al momento de pintar las coordenadas debido a que las dimensiones no son las mismas se tuvo que adecuar de tal manera que todas tengan las mismas dimensiones. A continuación, en la Ilustración 5 se muestra el código.

Función de transformación de las coordenadas de yolo v5 al frontal

Finalmente, en la siguiente ilustración se muestra la Landing Page y los resultados del modelo.

Landing page para presentación del demoday
Inferencia del modelo sobre una imagen de prueba


5. Resultado del Entrenamiento

Los resultados obtenidos durante el entrenamiento son muy alentadores a pesar de haber trabajado con un dataset no tan grande. Se ha alcanzado un porcentaje de predicción del 71% lo cual es aceptable. Además, se tiene que las pruebas realizadas con imágenes con incendios forestales, se pudo detectar el incendio absolutamente en todas. Estas imágenes contenían incendios a la luz del sol, faltaría realizar pruebas con imágenes que contengan incendios forestales nocturnos.

Matriz de confusión

En la Figura 1, se muestra el desempeño de nuestro algoritmo con una predicción del 71% de acierto.

Matriz de confusión


Curva de Precisión de Recuperación (PR)

La curva PR se la utilizó para la evaluación de rendimiento de nuestro modelo. En la Figura se observa que el AP(Promedio de Precisión) es de 0.5, un nivel de precisión normal para empezar. Para conocimiento general, si este valor se acerque más a 1 será mucho mejor el nivel de precisión de nuestro modelo.

Curva PR del modelo tuneado


Conclusiones

  • Se requiere un mayor poder computacional para entrenar modelos que tardan más de 12 horas en terminar el proceso de aprendizaje y los mismos tengan un buen porcentaje de confianza en la predicción.
  • El modelo tiene un tiempo corto de respuesta para la inferencia y esto es útil una vez que esté montado en el dron para la vigilancia de los bosques.
  • Después de realizar varios experimentos con el modelo se ve un potencial enorme que se puede explotar para detección de incendios de todo tipo.

“Nunca se alcanza la verdad total, ni nunca se está totalmente alejado de ella”. Aristóteles (384 AC-322 AC)

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esa aplicación: https://github.com/SaturdaysAI/Projects/tree/master/Quito/2021/deteccion-temprana-de-incendios_main


¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!Saturdays.AI

WRITTEN BY

Wilfredo Martel

I am a very curious and sometimes an intrepid person. I love learning and build new things.

Saturdays.AI

Saturdays.AI

Saturdays.AI is an impact-focused organization on a mission to empower diverse individuals to learn Artificial Intelligence in a collaborative and project-based way, beyond the conventional path of traditional education.

DETECTAA-AI: Inteligencia Artificial en el diagnóstico presuntivo de trastornos del desarrollo en niños

Quito. 2021

Utilizamos la Inteligencia Artificial para ayudarnos a realizar el diagnóstico presuntivo de trastornos en niños en edad escolar.

Saturdays.AI es una iniciativa a nivel global, cuyo principio es promover escenarios para la democratización del aprendizaje de la Inteligencia Artificial para todos y de forma ubicua. Democratizar, significa facilitar el acceso a todos los ciudadanos que deseen alcanzar una formación pertinente, relevante y de calidad, en cualquiera de los niveles educativos o profesionales. Por ese motivo, el equipo de investigación y desarrollo, conformado por: {Andrea Mariana EscobarDanny AguirreLuis Chamba ErasMarco ChiluizaPaúl Quezada}, decidió participar en la Tercera Edición del Saturdays AI Quito, que de manera inédita, ubicua y flexible, se desarrolló de manera virtual.

En la primera sesión, se desarrolló la lluvia de ideas, con el objetivo de identificar la línea de investigación base, sobre el cual se desarrollaría el proyecto, sobre todo que tenga un impacto social y relacionado con los objetivos-metas de la Agenda 2030.

Originalmente se propuso el tema “Chatbot para la gestión de emociones de niños autistas”, obteniendo el primer árbol de problemas (Fig. 1), luego, se puso en marcha la estrategia de búsqueda de literatura que permita definir el alcance a la propuesta, se encontró 27 artículos científicos vinculados a esa línea base (ver Tabla 1).

Figura 1. Árbol de problemas inicial.

La literatura científica permitió conocer y comprender lo que se ha hecho y lo que se puede hacer en temas con el autismo, con ello se concluyó que el tema es muy amplio y con mucho futuro de trabajo para proyectos vinculados a la parte informática con un fin social. Además, se identificó que no existe un conjunto de datos de acceso libre que sirva como punto de partida para el tema planteado.

Otro punto clave, fue hacer búsquedas en grupos afines al tema del autismo, tanto en redes sociales como en la Web, con ello se observó que es un tema muy delicado y complejo, desde el punto de vista de los que conviven con el autismo, o los que no lo hacemos. Posiblemente es un tema que no ha tenido una visibilidad y democratización que permita, definir políticas para apoyar y educar a todos los que nos relacionamos con personas con autismo, sea de manera directa o indirecta. Con esto, se necesitó acudir con los profesionales o especialistas en campo, para despejar muchas dudas surgidas por la exploración preliminar, y con ello ver la viabilidad de la propuesta.

En el camino surgieron nuevas pistas, se encontró un conjunto de datos en Kaggle (https://www.kaggle.com/gpiosenka/autistic-children-data-set-traintestvalidate), relacionado con el autismo, que ha sido utilizado para construir algunos modelos que permiten por medio de la visión por computador predecir por medio de una fotografía si un niño tiene o no autismo. Con ello, cambió la perspectiva del proyecto, de pasar de las emociones (sin un conjunto de datos) al reconocimiento facial (con un conjunto de datos) en el mismo ámbito del autismo.

Para seguir en línea de conocer la opinión profesional sobre la propuesta, se realizó dos entrevistas, la primera con la especialista Amparito Morales, a la cual, se le presentó nuestra nueva idea, de que por medio de la tecnología se podía ayudar a mejorar en los diagnósticos en el área del autismo, inicialmente, se tuvo resistencia en el uso de la tecnología, pero eso fue bueno, porque permitió como equipo, convencer a la profesional de la utilidad real en escenario como en los grandes colegios o escuelas, en dónde el trabajo de los pocos especialistas (Departamento de Consejería Estudiantil (DECE)) puede ser apoyado por una herramienta que apoye en las tareas de automatización, en este caso, reconociendo cuáles de los niños por medio de una fotografía podría tener su atención prioritaria en la detección temprana del autismo.

De la primera entrevista surgió la segunda, con la reconocida investigadora Catalina López, pionera en el Ecuador por su enfoque senso-perceptivo para identificar los perfiles de autismo de acuerdo a la idiosincrasia de un país.

Actualmente, se encuentra terminando una herramienta de tamizaje orientado para niños y adolescentes de 4 a 17 años (características para alerta al diagnóstico clínico), además, durante la entrevista, Catalina López, validó la idea del proyecto, agregándole nuevas ideas vinculadas con las tecnologías, y que han surgido de sus investigaciones, como por ejemplo, realidad virtual para aplicar las herramientas de tamizaje, automatización de la herramienta de tamizaje considerando la protección de datos, privacidad, anonimato, confidencialidad, código de ética bajo principios mundiales, consentimiento informado, entre otros.

Finalmente, la investigadora propuso que un chatbot mediante la interacción sea por voz o texto, permitiría identificar patrones de comportamiento y el tema de emociones. Esta entrevista, fijó el trabajo o líneas futuras que se derivan del proyecto, centrándo el tema de reconocimiento fácil y una herramienta de tamizaje (Fig. 3), como el límite para la propuesta final del proyecto DETECTAA-AI, con la que se trabajó en el Saturdays AI.

Figura 2. Entrevista con Catalina López, Especialista en Perturbaciones de la Comunicación Humana de la Universidad Andina Simón Bolívar.
Figura 3. Lluvia de ideas del modelo inicial del proyecto DETECTAA-AI.


Contexto

Los trastornos del desarrollo, técnicamente conocidos como trastornos del neurodesarrollo, son trastornos con base neurológica que pueden afectar la adquisición, retención o aplicación de habilidades específicas o conjuntos de información. Consisten en alteraciones en la atención, la memoria, la percepción, el lenguaje, la resolución de problemas o la interacción social. Estos trastornos pueden ser leves y fácilmente abordables con intervenciones conductuales y educativas o más graves, de modo que los niños afectados requieran un apoyo educativo particular. Entre los trastornos del neurodesarrollo tenemos: trastorno de déficit de atención/hiperactividad, trastornos del espectro autista, dificultades del aprendizaje, como la dislexia y las deficiencias en otras áreas académicas, discapacidad intelectual, síndrome de Rett.

El autismo es un trastorno neurológico complejo que generalmente dura toda la vida. Es parte de un grupo de trastornos conocidos como trastornos del espectro autista (TEA). Actualmente se diagnostica con autismo a 1 de cada 68 individuos y a 1 de cada 42 niños varones, haciéndolo más común que los casos de cáncer, diabetes y SIDA pediátricos combinados. Se presenta en cualquier grupo racial, étnico y social, y es cuatro veces más frecuente en los niños que en las niñas. El autismo daña la capacidad de una persona para comunicarse y relacionarse con otros. También, está asociado con rutinas y comportamientos repetitivos, tales como arreglar objetos obsesivamente o seguir rutinas muy específicas. Los síntomas pueden oscilar desde leves hasta muy severos” [1].


El autismo en Ecuador

De acuerdo a la especialista Catalina López, se tiene los siguientes avances:

A nivel mundial se estima que el 1% puede estar dentro del TEA, según la Organización Mundial de la Salud, en 2018 se reportaron 1.521 en Ecuador, y aproximadamente un 13,75% se tiene diagnósticos erróneos.


¿Cuál es el problema?

El personal que labora en los departamentos de consejería estudiantil de las unidades educativas (DECE) debe realizar evaluaciones para determinar los alumnos que pudiesen presentar problemas de comportamiento. Debido a la gran cantidad de estudiantes asignados a cada profesional de estos departamentos, el proceso de evaluación consume la mayor cantidad de tiempo disponible por este personal, dejando muy pocos recursos para profundizar el diagnóstico y apoyo a los niños que realmente presentan trastornos del desarrollo. En la Fig. 4 se observa el árbol de problemas, que se lo obtuvo, previa lluvia de ideas, lectura de la literatura y luego de las entrevistas.

Figura 4. Árbol de problemas relacionados con el proyecto DETECTAA-AI.


¿Cómo lo pensamos resolver?

Se desarrollará una aplicación Web formada por dos componentes (Fig. 3).

El primer componente ayudará a predecir qué estudiantes pueden o no tener el TEA basado en una imagen fotográfica (tipo tamaño carné) por medio de visión por computador. Los rasgos que se determinen dependen de las bases de datos disponibles. En una primera fase se utilizará la base de datos disponible en Kaggle (https://www.kaggle.com/gpiosenka/autistic-children-data-set-traintestvalidate) para detección facial de TEA, considerando definir un proceso de entrenamiento del sistema que permita detectar nuevos factores de comportamiento a medida que se disponga de bases de imágenes adicionales.

Técnicamente, el tamizaje corresponde a la aplicación de un test o procedimiento a personas “asintomáticas”, con el objetivo de separarlos en dos grupos; aquellos que tienen una condición que podría beneficiarse de una intervención temprana; y aquellos que no.

El segundo componente realizará un tamizaje, usando el test MCHAT, y que sea la base para en el futuro implementar el procesamiento de lenguaje natural (chatbot de preguntas y respuestas).


¿Cómo se vincula el proyecto con los objetivos de desarrollo sustentables?

Se vincula con dos objetivos:

Primero, con el de Salud y bienestar (ODS 3), meta: reforzar la capacidad de todos los países, en particular los países en desarrollo, en materia de alerta temprana, reducción de riesgos y gestión de los riesgos para la salud nacional y mundial.

Segundo, con la Reducción de las desigualdades (ODS 10), meta: el avance en la reducción de la desigualdad, tanto dentro de los países como entre ellos, ha sido desigual. Todavía se debe dar más peso a la opinión de los países en desarrollo en los foros decisorios de las instituciones económicas y financieras internacionales. Además, si bien las remesas pueden ser un medio de supervivencia para las familias y las comunidades de los trabajadores migrantes internacionales en sus países de origen, el elevado costo de transferir dinero sigue reduciendo los beneficios.


¿Cuál es la hipótesis del proyecto?

El uso de la Inteligencia Artificial permitirá crear un prototipo que permita apoyar al diagnóstico presuntivo de trastornos del desarrollo en niños de edad escolar.


¿Cuál es la población objetivo?

  • Niños de 0 a 12 años
  • Padres, madres, cuidadores
  • Educadores
  • Especialistas de los DECE
  • Investigadores


¿Qué nos dice la literatura científica sobre proyectos relacionados con el reconocimiento facial?

La literatura científica que soporta nuestro proyecto se resume en la Tabla 2.


¿Qué es la visión por computador?

Es un campo de la Inteligencia Artificial enfocado a que las computadoras puedan extraer información a partir de imágenes, ofreciendo soluciones a problemas del mundo real (Fig. 5).

Figura 5. El reconocimiento facial puede ayudar a mejorar los diagnósticos, foto derecha, niño sin TEA, niño de la izquierda niño con TEA.


¿Qué áreas del conocimiento se vinculan?

  • Ciencias de la Salud (Salud Mental).
  • Ciencias de la Computación (Inteligencia Artificial, Visión por Computador).


Metodología

La metodología que se utilizó fue Desing Thinking, en la Fig. 6 se observa un resumen de cada una de las etapas desarrolladas.

Figura 6. Descripción de cada una de las etapas de la metodología de acuerdo con el proyecto DETECTAA-AI.

En la Fig. 7, se tiene un lienzo de trabajo proporcionado por https://www.analogolab.co/, para poner en marcha los principios de la metodología Desing Thinking. En este enlace Web, se observa el diseño completo del proyecto.

Figura 7. Idea general del proyecto, Mapeo de actores vinculados con el proyecto, definir los clientes o interesados en el proyecto, futuros beneficiarios, Declaración de la idea, Factores positivos, oportunidades, problemas y soluciones.


Resultados

Arquitectura

La arquitectura del proyecto está dividida en una aplicación de Frontend y una aplicación de Backend (ver Fig. 8). El Frontend, desarrollado con Flask (Framework de Python), contiene todas las interfaces con las cuales el usuario final interactúa. Esta, a su vez, se conecta mediante un endpoint al Backend. En el Backend se encuentra una API, desarrollada con Flask, que contiene un modelo de Deep Learning entrenado con librerías de TensorFlow y un conjunto de imágenes obtenidas desde Kaggle. El Frontend también interactúa con un modelo entrenado en Teachable Machine (una plataforma de Google para entrenar modelos de machine learning de forma rápida y fácil).

Figura 8. Arquitectura propuesta para DETECTAA-AI.


Enlaces Web a las API y a la aplicación de DETECTAA-AI:


Flujo de trabajo de DETECTAA-AI

Los resultados obtenidos para el primer caso (niño con TEA) son bastante favorables, ya que tanto los modelos como el cuestionario dan un porcentaje alto de detección de TEA en la persona evaluada, tal como se muestra en la Fig. 9.

Figura 9. Flujo de trabajo, caso 1.

Los resultados del segundo caso (niña sin TEA), presentan porcentajes aceptables en el diagnóstico de TEA. Tal como muestra la Fig. 10, los resultados obtenidos fueron: Teachable Machine: 100%, TensorFlow: 85.28% y M-Chat: Riesgo Bajo.

Figura 10. Flujo de trabajo, caso 2.

En el tercer caso (niño sin TEA) los resultados obtenidos de los modelos y M-chat reflejan resultados diferentes, ya que los modelos de machine learning devuelven diagnósticos acertados en cuanto a la prueba realizada, sin embargo, el M-chat retorna un Riesgo alto de tener un diagnóstico de TEA, como se muestra en la Fig. 11.

Figura 11. Flujo de trabajo, caso 3.


Conclusiones

Con el desarrollo del proyecto DETECTAA-AI se llegó a las siguientes conclusiones:

  • Es posible detectar indicios de TEA en las personas mediante el uso de modelos de inteligencia artificial.
  • Para que un modelo tenga una tasa de confiabilidad más alta, es necesario una mayor cantidad de imágenes de entrenamiento y mejor procesamiento de esa información.
  • Los algoritmos de inteligencia artificial sirven como un apoyo a los profesionales de la salud, más no como un reemplazo.
  • Es necesario un vínculo entre la academia, estado, empresas, gremios, sociedades, para que estas iniciativas se puedan poner en marcha de acuerdo al contexto Ecuatoriano.
  • Combinar la investigación científica a procesos profesionales, permite construir prototipos escalables en el tiempo.
  • El prototipo DETECTAA-AI, debe usarse con fines académicos y de investigación, como ejemplo de prueba de concepto, y no para ofrecerla como herramienta de diagnóstico final, ya que se necesita un equipo de profesionales que aporten en la detección del TEA.


Líneas futuras

  • Implementar la herramienta de tamizaje con NLP, de tipo de preguntas y respuestas, utilizando el cuestionario propuesto por la Dra. Catalina López en el contexto Ecuatoriano, considerando la privacidad, protección de datos, entre otros.
  • Obtener una base de datos propia de imágenes en el contexto de Ecuador, para realizar pruebas al prototipo DETECTAA-AI.
  • Es recomendable aumentar una tercera herramienta de detección de TEA por NLP, el cual permita detectar presencia de tea mediante el análisis de patrones en la voz de la persona que se requiera diagnosticar.
  • Concientizar a la población que la tecnología puede ser un apoyo muy importante en el contexto de la Salud.


Recursos del proyecto DETECTAA-AI


Referencias

[1] https://www.uasb.edu.ec/reconocimiento-a-la-directora-del-area-de-salud-catalina-lopez-id1550289/

Presentación del proyecto: DemoDay


¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!Saturdays.AI

Public domain.


WRITTEN BY

Luis Chamba-Eras

Profesor e investigador de la Universidad Nacional de Loja. Investigación en Inteligencia Artificial en Educación.

Saturdays.AI

Saturdays.AI

Saturdays.AI is an impact-focused organization on a mission to empower diverse individuals to learn Artificial Intelligence in a collaborative and project-based way, beyond the conventional path of traditional education.