artificial intelligence concept

Focus On Driving: Redes Neuronales aplicadas a la Seguridad Vial

Donostia. Segunda Edición. 2021

Introducción

Según la Dirección General de Tráfico (DGT), la distracción en la conducción es una de las principales causas de los accidentes de tráfico, siendo la causa de 1 de cada 3 accidentes mortales (33%), por delante de la velocidad (29%) y del alcohol (26%).

Tras un minuto y medio de hablar por el móvil (incluso con manos libres), el conductor no percibe el 40% de las señales, su velocidad media baja un 12%, el ritmo cardíaco se acelera bruscamente durante la llamada y se tarda más en reaccionar.

La peligrosidad por un uso inadecuado del móvil puede llegar a ser equiparable a la conducción con exceso de alcohol.

Más de 1 de cada 3 españoles reconoce haber hablado por teléfono, leído o escrito mensajes durante la conducción en los últimos años.

Un conductor que habla mientras conduce:

· Pierde la capacidad de mantener una velocidad constante.

· No guarda la distancia de seguridad suficiente con el vehículo que circula delante.

· El tiempo de reacción aumenta considerablemente: entre medio a dos segundos, dependiendo de los reflejos de cada conductor.

Figura 1. Imágenes de distracciones comunes al conducir.

Esto hace que la detección de estas distracciones sea esencial para mejorar la seguridad vial. Si se pudiera “detectarlas” con el fin de avisar al conductor de que algo va mal, el número de accidentes podría disminuirse radicalmente.

En este proyecto estaremos enfocados en detectar algunas distracciones más comunes, como utilizar el móvil, mirarse al espejo o beber algo mientras conducimos, bien como identificarlas.

Objetivo

El objetivo de este proyecto es ajustar un modelo de Machine Learning capaz de identificar y clasificar las diferentes distracciones a que estamos expuestos siempre que conducimos.

Para ello, trabajaremos con una técnica de Deep Learning conocida como “Redes Neuronales Convolucionales” (CNN o “Convolutional Neural Network”).

Probaremos algunas arquitecturas de redes neuronales, todas ellas mejoradas con redes pre-entrenadas para la clasificación de imágenes (transfer learning).

Conjunto de Imágenes

El conjunto de imágenes que hemos utilizado en el marco de este proyecto proviene de un concurso lanzado en la plataforma Kaggle hace aproximadamente 5 años (pulse aquí para verlo).

Todas las imágenes han sido obtenidas por medio de una cámara instalada dentro del coche, siempre con un conductor dentro y en diversas situaciones cotidianas.

Las fotos han sido tomadas en un ambiente controlado: un camión arrastraba el coche por las calles, de tal manera que los conductores no tuviesen que conducir de verdad.

Para el entrenamiento de los modelos, hemos contado con un total de 22.424 imágenes, clasificadas en 10 categorías:

Figura 2. Descripción de las 10 categorías del experimento.

Exploratory Data Analysis

Como parte de la etapa de “Exploratory Data Analysis”, hemos comprobado que todas las imágenes tenían la misma dimensión: (480, 640, 3).

Tras un muestreo aleatorio, podríamos afirmar que las imágenes estaban bien clasificadas a lo largo de las 10 categorías del experimento. Esto se debe seguramente por tratarse de un conjunto de imágenes proveniente de un experimento controlado y que fue a concurso en la plataforma Kaggle.

Además, las imágenes estaban distribuidas de una forma razonablemente equilibrada entre las 10 categorías, por lo que prácticamente hemos podido “saltarnos” a la etapa de “EDA” para irnos directamente a la fase de entrenamiento de los modelos de CNN.

Figura 3. Distribución del número de imágenes entre las 10 categorías del experimento.

También estaban disponibles en la plataforma Kaggle 79.725 imágenes para testeo, sin ningún tipo de clasificación o etiqueta.

Es importante mencionar que las imágenes de entrenamiento y testeo estaban divididas en Kaggle de tal manera que un mismo conductor no podría aparecer en los 2 grupos (entrenamiento y testeo).

En general, las 10 categorías podrían ser consideradas “excluyentes”, a excepción de las categorías “c0” (conduciendo de forma segura) y “c9” (hablando con pasajero), que se parecen más entre ellas y podrían ser consideradas “no excluyentes”, ya que, en algunas situaciones, tienen en común las 2 manos colocadas en el volante.

Figura 4. Imágenes de 2 conductores, la primera de la categoría “c0”, y la segunda, de la categoría “c9”.

Implementación

En líneas generales, hemos seguido los siguientes pasos para el ajuste de las Redes Neuronales Convolucionales presentadas en este proyecto:

  1. Bajar y pre-procesar las imágenes de los conductores.
  2. Construir y entrenar un modelo para clasificar las imágenes de los conductores.
  3. Chequear el ajuste del modelo y mejorarlo usando diferentes técnicas.

Transfer Learning

Normalmente, no hace falta entrenar una Red Neuronal Convolucional empezando de cero.

Redes Convolucionales modernas, entrenadas con enormes conjuntos de datos como ImageNet, pueden tardar semanas en múltiples GPU’s.

En cambio, una práctica cada vez más habitual es el uso de redes pre-entrenadas como un extractor de características fijas, o como una red inicial para ajustes más finos.

La red pre-entrenada VGG es interesante para el objetivo de este proyecto porque, aparte de su sencillez, genera excelentes resultados. La idea es mantener todas las capas de la red VGG, conectando su capa final a nuestro propio clasificador.

De esta forma, podríamos usar la red VGG como un extractor de características fijas para nuestras imágenes, quedando pendiente el entrenamiento de un clasificador más sencillo al final de todo (top model).

En este proyecto, utilizaremos la red pre-entrenada “VGG16”, como punto de partida. Para el ajuste más fino, utilizaremos 3 capas finales, propuestas en este link (“Hands-on Transfer Learning with Keras and the VGG16 Model”).

A partir del resultado de este primer ajuste, construiremos nuevos modelos, con más capas. También utilizaremos el recurso de Data Augmentation, e incluso nos atreveremos a cambiar la “VGG16” por la “VGG19”, red neuronal pre-entrenada más compleja, ya que cuenta con 3 capas más que la “VGG16”.

Amazon Web Services

Los ajustes de este primer modelo y de todos los demás presentados en este artículo han sido realizados en SageMaker de Amazon Web Services. Para ello, hemos contado con el crédito de 1.000$ que Amazon nos concedió por formar parte de la familia Saturdays.AI.

Hemos elegido el centro computacional ubicado en ‘EE.UU. Este (Ohio)us-east-2’, ya que este centro disponía de máquinas con GPU. La máquina elegida para abrir la instancia de nuestro notebook en SageMaker ha sido: ‘ml.p3.2xlarge’.

Parámetros y Evaluación de los Modelos

Un resumen de los parámetros de los modelos ajustados será presentado a continuación en modo de tabla.

De todas formas, no está de más comentar que, en todos los modelos, hemos fijado Batch = 32 y Epochs = 25, para que hubiese una base de comparabilidad entre los ajustes de los modelos.

Para hacer la evaluación de los modelos ajustados, además de las gráficas de accuracy y de loss generadas por el algoritmo, hemos clasificado 1.002 imágenes, que a partir de ahora llamaremos ‘Test Data’.

Esta imágenes han sido elegidas aleatoriamente de las 79.725 imágenes no clasificadas para testeo, con el objetivo de tener una medida de accuracy en un conjunto de imágenes totalmente ajeno a los datos utilizados para los entrenamientos (‘Test DataAccuracy).

También hemos preparado un código en Google Colab (“model_test.ipynb”), para poder visualizar el resultado del modelo en cada imagen, como se puede ver en el GIF de abajo.

Figura 5. Output de “model_test.ipynb”.

Modelo 1: VGG16 + 3 Capas

Como comentado anteriormente, para el primer modelo (“base”) hemos utilizado la red pre-entrenada “VGG16”, y para el ajuste más fino, hemos utilizado 3 capas finales.

El resultado del ajuste de este modelo podría ser considerado satisfactorio, teniendo en cuenta que este ha sido el primer intento de modelización del proyecto:

· ‘Test DataAccuracy: 80,44%

Figura 6. Gráficas de Accuracy y Loss del Modelo 1.

Modelo 2: VGG16 + 3 Capas + Data Augmentation

Para mejorar el modelo anterior, nos hemos planteado utilizar el recurso de “Data Augmentation.

En principio, no sabíamos a que se referían algunos de los diversos parámetros disponibles para hacer el Data Augmentation, tampoco qué significaban sus rangos.

Para solventarlo, hicimos una serie de pruebas, para poder decidir qué parámetros de Data Augmentation queríamos emplear en nuestro conjunto de imágenes y sus respectivos rangos.

Al tratarse de un experimento controlado, el conjunto de imágenes utilizado requería un Data Augmentation controlado y discreto, teniendo en cuenta que cambios exagerados aplicados a las imágenes originales podrían ser contraproducentes.

Por ejemplo, hemos decidido no hacer “rotaciones”, ya que corríamos el riesgo de generar imágenes “antinaturales”.

Los parámetros de Data Augmentation que hemos utilizado han sido: “zoom”, “width”, “height” y “brightness”. A continuación, algunos ejemplos.

Figura 7. Zoom_range = [0.95, 1.05]
Figura 8. Width_shift_range = 0.1

Nota: las imágenes tienen ese tono debido al preprocesamiento de RGB.

El resultado del ajuste de este modelo ha mejorado considerablemente con relación al anterior (Modelo 1), por lo que hemos decidido continuar utilizando Data Augmentation en los siguientes modelos ajustados en el marco de este proyecto.

· ‘Test DataAccuracy: 83,73%

Figura 9. Gráficas de Accuracy y Loss del Modelo 2.

Modelo 3: VGG16 + 5 Capas + Data Augmentation

De cara a seguir mejorando el ajuste anterior, hemos incrementado 2 capas a la red neuronal final (top model), manteniendo los mismos parámetros de Data Augmentation del modelo anterior.

Se observa una mejora importante en el accuracy del modelo en ‘Test Data’:

· ‘Test DataAccuracy: 88,12%

Figura 10. Gráficas de Accuracy y Loss del Modelo 3.

Modelo 4: VGG19 + 5 Capas + Data Augmentation

A esta altura, ya que los resultados habían mejorado considerablemente, hemos decidido hacer algo diferente, como un cambio de la red pre-entrenada, para seguir explorando nuevos caminos hacia la mejora.

Hemos utilizado la red “VGG19”, que contiene 3 capas más que la red “VGG16”.

En este caso, los resultados de accuracy no han mejorado respecto al Modelo 3:

· ‘Test DataAccuracy: 84,53%

Figura 11. Gráficas de Accuracy y Loss del Modelo 4.

Por lo que hemos decidido volver a utilizar la red “VGG16” para el ajuste del siguiente modelo.

Modelo 5: VGG16 + 9 Capas + Data Augmentation

Para seguir explorando otras posibles mejoras en lo que concierne al accuracy del modelo, hemos decidido aumentar considerablemente el número de capas, de 5 a 9, manteniendo el Data Augmentation anterior.

En este caso, tampoco hemos mejorado el accuracy respecto al Modelo 3, aunque el resultado haya sido bastante aceptable:

· ‘Test DataAccuracy: 86,63%

Figura 12. Gráficas de Accuracy y Loss del Modelo 5.

Tabla Resumen

La tabla a continuación detalla los 5 modelos ajustados y la línea de razonamiento seguida para ir ajustándolos, paso a paso.

En azul, los cambios implementados a partir del primer modelo (“base”), y los mejores resultados de accuracy (> 85%).

Figura 13. Parámetros y resultados de los 5 modelos ajustados.

Matriz de Confusión: Modelo 3

Los porcentajes de acierto por categoría provenientes del ajuste del Modelo 3 son en general bastante satisfactorios.

Esto se refleja en la Matriz de Confusión del modelo.

Figura 14. Matriz de Confusión del Modelo 3.

Se destacan las siguientes categorías por su alto porcentaje de acierto (>95%): “c3” (tecleando el móvil -mano izquierda), “c5” (manipulando la radio) y “c7” (buscando en la parte trasera).

Figura 15. Porcentajes de acierto por categoría.

Es notable la disminución del porcentaje de acierto en la categoría “c9” (hablando con pasajero). Esto pasa debido a que las categorías “c0” y “c9” podrían ser consideradas las “menos excluyentes”, según comentado anteriormente.

Si tenemos en cuenta “c9” y “c0ambas como clasificaciones correctas para “c9”, este porcentaje de acierto para “c9” se incrementa un 30,2% (de 54,5% a 85,7%), acercándose a los porcentajes de acierto de las demás categorías.

Hemos realizado este cálculo para intentar cuantificar el impacto en accuracy por el hecho de haber trabajado con un par de categorías “algo menos excluyentes”.

Si las categorías “c0” y “c9” hubiesen sido definidas de una forma “más excluyente”, seguramente hubiésemos conseguido unos ajustes con mejor accuracy desde el principio.

Por otro lado, entendemos que el estudio tiene que reflejar situaciones cotidianas, ya que serán la realidad a ser afrontada en el momento de desplegar cualquier modelo en la vida real.

Conclusiones

La gran capacidad computacional que requiere este tipo de técnica ha hecho que tuviéramos que dedicar una parte importante del recurso del proyecto para solventar problemas de ejecución de los códigos utilizados.

Hemos tenido que aprender a utilizar los servicios de Amazon Web Services para hacerlo viable, y los modelos de este proyecto han podido ser entrenados gracias a las GPU’s disponibles de esta plataforma.

A continuación, se presentan algunas conclusiones y lecciones aprendidas tras desarrollar este proyecto:

  1. No siempre un incremento de capas a la Red Neuronal va a mejorar el accuracy del ajuste del modelo. Este hecho se ha podido ver en los ajustes de los Modelos 3 y 5.
  2. El recurso de Data Augmentation debe ser utilizado con criterio, tras un análisis del conjunto de imágenes inicial, ya que su uso indiscriminado puede ser contraproducente.
  3. El trabajo en equipo ha sido fundamental para el éxito de este proyecto. Los perfiles diferentes entre los miembros del equipo del proyecto y del equipo coordinador de Saturdays.AI Donostia ha sido clave para sumar una visión amplia y enriquecedora.

El camino no ha sido fácil y ha requerido muchas horas de entrenamientos. Pero créenos: ¡ha merecido la pena!

Próximos Pasos

Como próximos pasos, nos planteamos lo siguiente:

· Ajustar un segundo modelo más específico que aprenda a detectar las diferencias entre las categorías “c0” y “c9”.

· Volver a entrenar el Modelo 4 (VGG19 + 5 capas + Data Augmentation), pero ahora con más “epochs”. La idea es observar si con más entrenamientos la red “VGG19” converge a los mismos resultados observados con la red “VGG16”.

· Ejecutar el Modelo 3 en una Jetson Nano Nvidia, y por medio de una cámara instalada en el coche, comprobar la eficacia del modelo en la detección de comportamientos inadecuados.

Integrantes

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esta aplicación: https://github.com/SaturdaysAI/Projects/tree/master/Donostia/Donostia2021/focusondriving-main

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

CiclopeIA: Inteligencia artificial para la ayuda a personas con discapacidad visual

Latam online. Segunda Edición. 2021

A mucha gente le motiva los retos en el trabajo, en los estudios y en la vida en general, pero pregunto, puedes imaginar una vida en donde cada día existen retos diferentes, iniciando desde la mañana cuando al levantarte y tomar un refrescante baño en la mañana, debes hacer lo necesario para no tropezar en el camino para encontrar tu ropa y combinarla adecuadamente para la ocasión, pues hoy debes ir al centro de la ciudad a cumplir con unos trámites burocráticos que requieres, además de hacer las compras del supermercado para la semana. Luego de prepararte un café y conseguir que no se te riegue del borde de la taza, estás listo para empezar tu día, sales de tu casa y esperas no tener que tropezar con obstáculos que son comunes en la calle: basura que no llegó a su respectivo tacho, las mejoras de la ciudad caracterizadas por sus constantes cambios de planificación a costa de dejar trabajos inconclusos en las calles, los no tan amigables perros en la calle que podrían poner a prueba tu instinto y la razón, pero bueno es algo que uno ya sabe y lo que debe hacer es llegar hasta la estación del bus y esperar que algún transeúnte de buen corazón te ayude a identificar la línea de bus que te acerque a tu destino. Ya habrá tiempo para ir luego al supermercado, conseguir lo necesario y confiar en recibir lo justo como cambio o tener la seguridad de pagar lo que corresponda.

Estas situaciones describen una vida llena de retos que deben afrontar las personas no videntes cotidianamente, y que muchas veces les impide integrarse socialmente en entornos laborales, comerciales, de ocio e incluso incrementan su dependencia de terceros, lo cual supone, además, un impacto psicológico que eventualmente y de a poco va minando su autoestima.

Dependiendo de la edad en que las personas no-videntes pierden el sentido de la vista puede llegar a ser una experiencia más o menos traumática que podrá ser llevadera si se cuenta con apoyo emocional sobre todo en la etapa inicial y se trabaja fuertemente para educarse y adaptarse a su nueva condición y calidad de vida, que demandará pasar por un tortuoso camino de duelo por la pérdida de la vista.

A pesar de estas situaciones nada alentadoras, existen muchas personas que no se dejan vencer por la adversidad y logran con éxito adaptarse tanto emocional y socialmente para llevar una vida digna y con razones para continuar retando la adversidad día a día.

De acuerdo a la OMS [1] “A nivel mundial, se estima que aproximadamente 1300 millones de personas viven con alguna forma de deficiencia visual.

A nivel mundial, las principales causas de la visión deficiente son los errores de refracción no corregidos y las cataratas.

La mayoría de las personas con visión deficiente tienen más de 50 años.”

Además, El deterioro de la vista o su pérdida, tiene impactos en la calidad de vida de las personas que lo padecen, de acuerdo a OMS, “Los niños pequeños con deterioro grave de la visión a edad temprana pueden sufrir retrasos en el desarrollo motor, lingüístico, emocional, social y cognitivo”.

“En el caso de los adultos mayores, el deterioro de la visión puede contribuir al aislamiento social, a la dificultad para caminar, a un mayor riesgo de caídas y fracturas, y a una mayor probabilidad de ingreso temprano en residencias de ancianos.”

The Lancet Global Health [ 2] afirma que:

“En 2020, un estimado de 596 millones de personas a nivel mundial, tienen deficiencia de visión a distancia, y de estos 43 millones son ciegos.”

“Una proporción grande de estos (90%), viven en países de ingresos bajos o medios”.

“Para 2050, el envejecimiento de la población, el crecimiento y la urbanización conllevarán un estimado de 895 millones de personas con deficiencia visual a distancia y 61 millones de ciegos.”

Ante esta problemática, y como parte de la aplicación práctica de un curso de Machine Learning [ 3] e Inteligencia Artificial (IA) [4], nace la idea de usar la tecnología para identificar ideas que puedan abordar la problemática de las personas con discapacidad visual y diseñar una herramienta que les apoye en la consecución de sus actividades cotidianas. La idea del grupo fue pensar en un proyecto que pueda aportar socialmente y que tenga un impacto en la comunidad. Desde el punto de vista de los Objetivos de Desarrollo Sostenible (ODS) [5] estarían relacionadosSalud y bienestar, Industria, innovación e infraestructura, reducción de las desigualdades y alianzas para lograr los objetivos.

El proyecto Ciclope.IA, como lo hemos llamado, busca integrar en una aplicación para celular, diferentes opciones (skills) orientadas a solucionar limitaciones que experimentan personas con discapacidad visual en sus actividades cotidianas tales como: Reconocimiento de billetes y monedas de manera rápida y efectiva, identificación de la línea de autobús, identificación de colores, conocer el nivel de llenado de un recipiente, encontrar objetos perdidos, etc.

Como se puede observar las opciones que se pretenden integrar son ambiciosas y demandarán un trabajo extenso, sin embargo, es necesario empezar por algo, se suele decir que una “torta se la come en pedazos” y es por ello que la aplicación inicialmente dispone de la funcionalidad que permite al usuario reconocer la cantidad de dinero en efectivo en dólares (billetes), haciendo uso de la cámara de su celular. Posterior a la detección, la app reproduce un mensaje de voz con el resultado del monto reconocido. El uso de Ciclope.IA brinda al usuario seguridad y autonomía al momento de realizar transacciones en efectivo y disminuye el riesgo de ser víctima de engaño. La interacción con la aplicación se puede realizar en idioma español bajo el sistema operativo Android.

Alcance inicial del proyecto

Cuando iniciamos el proyecto y luego de un acercamiento con un grupo de no-videntes identificamos algunas opciones (skills) que deberíamos incluir en la aplicación, así que para tomamos la opción más frecuentemente demandada que es la de identificación de billetes al momento de realizar transacciones monetarias con terceros. Adicionalmente se conoció que la mejor forma de interacción con personas no-videntes es a través de audio, por lo que decidimos que la interacción del usuario con la aplicación se debía hacer a través de voz tanto de entrada como de salida.

Para soportar nuestra configuración revisamos en algunas estadísticas en el sitio yiminshum.com, “actualmente hay 5.190 millones de usuarios únicos en dispositivos móviles, donde no divide el tipo de teléfono, esto cubre el 67% de la población.”

“El 73% de las personas están conectadas y comparten su tiempo desde un teléfono inteligente o smartphone. El 23,5% está asociado en un teléfono común, donde sus funciones son las básicas y limitadas que debe cumplir un teléfono que es llamar y enviar mensajes y el 3,6% está asociado a un router, tablet o PC móvil.”

“OS mejor conocido como sistema operativo, son importantes para el funcionamiento de los equipos en el mundo, el 74% de los usuarios son en equipos Android, 25% es iOS, 0,4% es KAI, 0,2% Samsung OS y 0,6% otros sistemas operativos.”

Con esta información se limitó el alcance del proyecto a teléfonos inteligentes Android que cubre una gran parte del mercado sobre todo en lugares diferentes a los Estados Unidos, a países hispanohablantes y que tengan su moneda de uso corriente el Dólar.

IA Aplicada

Frente a la problemática identificada se determinó que la mejor manera de apoyar a personas no-videntes es desarrollar una aplicación para celular que haga las veces de sus ojos en situaciones que se requieran, para ello desde el punto de vista técnico se exploraron diferentes modelos de reconocimiento de imágenes que podrían aplicarse, y al final se decidió usar YoloV5 por la versatilidad al momento de identificar objetos y basados en pruebas realizadas por Towards Data Science [6] que recomiendan el modelo frente a otro también muy conocido, otros elementos que consideramos fue la posibilidad de usar el modelo sin necesidad de tener una conexión de internet activa sino un modelo pre-entrenado que se copia en el celular en una versión Pytorch Lite que ocupe menos tamaño y recursos.

Para entrenar el modelo, se exploró opciones de dataset disponibles, desafortunadamente no se consiguió uno por lo que se optó por crear un dataset propio.

Unos de los grandes retos, justamente fue afinar el dataset para que incluya las imágenes adecuadas, considerando diferentes escenarios en los que podrían estar los billetes, considerar el reverso y adverso, y la cantidad suficientes de imágenes. Para conseguir las imágenes se usó una herramienta de Web scrapping y posteriormente con la herramienta online https://labelflow.ai/ se asignó a cada imagen las etiquetas para identificar a cada billete en las diferentes imágenes.

Luego de entrenar el modelo en la herramienta colab de Google se obtuvo un archivo con el mejor modelo generado y se lo uso en la aplicación de celular.

Sin lugar a dudas la IA dará solución a muchas problemáticas del día de hoy y permitirá que su aplicación se extienda masivamente en diferentes áreas del conocimiento y de la vida cotidiana. Nuestro trabajo es una pequeña muestra del potencial a explotar con IA y un aporte para aquellos interesados en apoyar a grupos como los no-videntes que deben superar la adversidad con poco o limitado apoyo de la sociedad.

Conclusiones

Las herramientas de Inteligencia Artificial pueden ser usadas para múltiples propósitos, sin embargo, desarrollar productos que permitan dar solución a necesidades de carácter social, representan una oportunidad enorme que reditúa en bienestar y mejora de la calidad de vida de grupos minoritarios de la sociedad.

Desde el punto de vista técnico el proyecto representó una oportunidad para continuar aprendiendo de este apasionante mundo de la IA y entender entre otras cosas que para crear modelos efectivos es importante trabajar de manera exhaustiva en:

  • Crear o disponer de datasets de calidad.
  • Aplicar diferentes modelos para evaluar el desempeño.
  • Hacer a los usuarios participes del desarrollo de productos.
  • Trabajar con equipos multidisciplinarios.
  • Mantener una permanente búsqueda de nuevas soluciones.

Video de demostración

Refererencias

[1] Organización Mundial De La Salud. (2021). Ceguera y discapacidad visual. Retrieved January 12, 2022, from https://www.who.int/es/news-room/fact-sheets/detail/blindness-and-visual-impairment.

[2] The Lancet Global Health. (2021). The Lancet Global Health Commission On Global Eye Health: Vision Beyond 2020. Retrieved January 12, 2022, from https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30488-5/fulltext

[3] BBVA (2019). ¿Machine Learning que es y cómo funciona? Retrieved February 4, 2022 from https://www.bbva.com/es/machine-learning-que-es-y-como-funciona/

[4] Juan Antonio Pascual Estapé(2019). Inteligencia artificial: qué es, cómo funciona y para qué se utiliza en la actualidad. Retrieved February 4, 2022 from https://computerhoy.com/reportajes/tecnologia/inteligencia-artificial-469917

[5] Naciones Unidades (2021). La agenda para el desarrollo sostenible. Retrieved February 4, 2022. https://www.un.org/sustainabledevelopment/es/development-agenda/

[6] Towards Data Science (2020). YOLOv5 compared to Faster RCNN. Who wins?. Retrieved February 4, 2022. https://towardsdatascience.com/yolov5-compared-to-faster-rcnn-who-wins-a771cd6c9fb4

Integrantes

  • Alexander Cortes
  • Ariosto Olmedo Cabrera
  • Antonio Paucar
  • Carlos Sesma
  • Miriam Quimi
  • Santiago Yunes
  • Viviana Márquez

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esta aplicación: https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/Ciclopeia

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

multa

Machine Learning para predecir la severidad de siniestros viales.

Latam online. Segunda Edición. 2021

Los accidentes de tránsito constituyen una de las causas de fatalidad y gravedad más importantes en distintos lugares del mundo, a causa de esto es indispensable disponer de una manera de reducirlos en la medida de lo posible a fin de evitar tragedias y pérdidas de vidas humanas dentro de un determinado territorio.

La Organización Mundial de la Salud (OMS) señala que cada año fallecen más de 1,35 millones de personas en todo el mundo a causa de los siniestros de tránsito, es decir una muerte cada 25 segundos, lo que los convierte en la causa más frecuente de decesos entre las personas de 15 a 29 años y en la novena más común en la población general. Los países de ingresos bajos y medianos tienen la mayor carga y las tasas más altas de mortalidad por siniestros de tránsito.

Los accidentes de tránsito en Ecuador tienen una ocurrencia bastante común, solo en la ciudad de Guayaquil entre el 2018 y el 2021 se registraron 17 671 accidentes con al menos un fallecido y 17 681 accidentes con al menos una persona lesionada de gravedad según fuentes oficiales de la Agencia de Tránsito y Movilidad (ATM); institución encargada de la seguridad vial en dicha ciudad.

Descripción del problema

En base a lo mencionado anteriormente se plantea el siguiente problema:
¿Se puede crear un sistema web que optimice los recursos de la agencia de tránsito y permita prevenir accidentes graves y/o fatales en la ciudad de Guayaquil?

Objetivo general

Se plantea como objetivo general implementar un modelo de Machine Learning para la estimación temprana de accidentes de tránsito graves o fatales mediante el análisis de datos previos relacionados a accidentes de tránsito en la ciudad de Guayaquil.

El siguiente gráfico muestra la idea central del proyecto.

Recolección de la información

La fuente principal de información es el dataset estructurado de la ATM que incluye ciertas condiciones suscitadas durante un siniestro. Luego de un análisis exhaustivo de las diferentes variables obtenidas, se procedió a descartar algunas de ellas debido a que no tenían dependencia significante con los siniestros, esta selección fue basada en artículos científicos relacionados con el tema.

Por motivos de privacidad de la ATM no podemos mostrar imágenes del dataset utilizado, sin embargo daremos información sobre las variables utilizadas:

Selección de los modelos

La selección de los modelos parte de las siguientes dos consideraciones:

  • Facilidad de su implementación.
  • Rendimiento del modelo.

Los modelos a desarrollarse son:

  • SVM (Máquina de Soporte Vectorial)
  • Random Forest
  • Regular Gradient Boosting

Técnicas implementadas

Las principales técnicas utilizadas para trabajar con el Dataset fueron la codificación de las variables categóricas a través del One-Hot-Encoding y la estandarización de las variables continuas.

Evaluación de modelos

SVM (Máquina de soporte vectorial)

Random Forest

Regular Gradient Boosting

Análisis de resultados

A continuación se muestran los resultados de los modelos SVM, Random Forest y Regular Gradient Boosting.

Precisión de modelo SVM

Precisión de modelo Random Forest

Precisión de modelo Regular Gradient Boosting

Precisiones finales

Conclusiones

El sistema se mostrará como una perfecta alternativa para la detección de accidentes graves y/o fatales ya que permite visualizarlos durante cada hora en un mapa interactivo incrustado en una interfaz web.

Además los modelos utilizados se encuentran entre los mejores para poder realizar clasificaciones multiclase, lo cual era el meollo del problema desde el inicio del mismo.

Planes a futuro

El presente proyecto tiene la intención de ser llevado las siguientes agencias e instituciones:

  • Agencia de Tránsito y Movilidad (ATM)
  • Comisión de Tránsito del Ecuador (CTE)
  • Agencias e instituciones destinadas al control del tránsito de los GAD y municipios que se encuentren en categoría A.

Integrantes

Ing. Miguel Angel Murillo Arteaga (miguelangelmurilloarteaga@gmail.com)

Ing. Christopher Vaccaro (chris_94_vacced@hotmail.com)

Ing. Stefany Uguña (solange95salazar@gmail.com)

Grace Reyes (grace.reyes22@gmail.com)

Wladimir Robles (W.Robles.Asociados@gmail.com)

Presentación del proyecto: Demoday

Repositorio

https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/viasegura

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

tac

Transformación de Imágenes de Angiotomografía por medio del uso de Inteligencia Artificial.

Latam online. Segunda Edición. 2021

Angiotomografías con contraste ¿Cuál es el problema?

El reto

Los medios de contraste vía endovenosa que se usan en las angiotomografias contrastadas pueden tener incidencia en la salud nefrológica de los pacientes, sobre todo en aquellos que tienen antecedentes de hipertensión arterial, hipercolesterolemia, antecedentes genéticos, en edad adulta mayor (60 años en adelante) y un riesgo cardiovascular aumentado (1), es decir, son más propensos a:

  • tener accidentes cerebrovasculares,
  • infarto agudo de miocardio,
  • enfermedad arterial periférica y,
  • enfermedades de la aorta en general

Existe la posibilidad de realizar angiotomografias simples que no requieren el uso de medios de contraste y que tienen un costo menor (alrededor de $200,00 de diferencia), pero estas no permiten una visualización completa de las estructuras aórticas con claridad (2), por lo que no son útiles en muchos casos, como en el de Jesús.

Por qué escogimos Angiotomografías?

La oportunidad ¿Cómo proponemos solucionarlo?

ANGIOP.AI (Sistema de Transformación de Imágenes de Angiotomografía) genera avances significativos en el análisis de imágenes médicas mediante modelos de análisis de inteligencia artificial para angiotomografias, brindando una alternativa que signifique un menor impacto para la salud de los pacientes que, por su diagnóstico y estado general, requieren realizarse este tipo de análisis de manera recurrente.

Figura 1. Estructura del modelo GAN aplicado a la transformación de imágenes de Angiotomografía

ANGIOP.AI basa su funcionamiento en el entrenamiento, validación y evaluación de un modelo CycleGAN para procesar imágenes de angiotomografias sin contraste y transformarlas en imágenes similares a las que se obtendrían usando métodos de contraste; se entrena un CycleGan para leer una imagen de un dataset X (imágenes sin contraste) y transformarlo para que parezca como si perteneciera a un dataset Y (imágenes con contraste).

¿Cuáles son los beneficios?

ANGIOP.AI está alineada al cumplimiento de los objetivos de desarrollo sostenible de las Naciones Unidas al 2030.

Lo explicamos paso a paso: metodología, modelo usado y datasets

Los datasets utilizados corresponden a los provistos por el Dr. Gonzalo Pullas, director de la carrera de Medicina en la Universidad de las Fuerzas Armadas; quien facilitó las imágenes de angiotomografias con contraste y angiotomografias simples (sin contraste) de 10 pacientes anónimos.

El total de imágenes facilitadas fueron de 5.144, de tamaño 512 x 512, en escala de grises, a las que se les aplicó una exploración de los datos — análisis estadístico para descartar imágenes a color y en 3D, sin datos atípicos y con Diferencias en distribución de pixeles (zonas / cortes). Es importante mencionar que las angiotomografías fueron tomadas en la misma zona anatómica, pero en diferentes oportunidades, es decir, las imágenes no corresponden a una paridad 1:1.

El modelo utilizado es CycleGan con pre-procesamiento de imágenes de escala -1 a 1 para la entrada del modelo. Los discriminadores son redes convolucionales con 5 capas que receptan imágenes de 256×256. Las 4 capas son de definición de patrones y una capa de clasificación. El generador utiliza tres capas convolucionales y seis bloques residuales. Para el cálculo de las funciones de costos, tanto para las imágenes reales como falsas, se está utilizando el proceso del error cuadrático medio (mean squared error).

El modelo utiliza los siguientes parámetros:

  • 20000 épocas
  • Tasa de aprendizaje del 0,0001

Para el entrenamiento se aplicaron los siguientes pasos:

  • Seleccionar una cantidad de imágenes reales
  • El generador toma las imágenes reales y les agrega ruido para crear una cantidad de imágenes falsas
  • Entrenar al discriminador, haciendo que clasifique las imágenes como falsas o verdaderas un cierto número de veces o épocas
  • Generar otra cantidad de imágenes falsas para entrenar el generador
  • Se entrena al modelo
  • Para finalizar el modelo, se debe revisar la veracidad de la ejecución, revisando el gráfico de pérdidas a través del tiempo y revisando las muestras generadas por el modelo.

Veamos los resultados:

Lecciones aprendidas

  • Enseñar al modelo a validar las imágenes de entrada si corresponde a la zona angio toráxica.
  • Aumentar el Dataset para futuros entrenamientos.
  • Se requiere una validación de las imágenes generadas con un panel de expertos médicos.

Lo que se viene: Futuro de ANGIOP.AI

  • Usar la data generada para medir el impacto del uso del sistema en reducción de incidencia de enfermedades renales.
  • Desarrollar una aplicación Web.

Referencias

(1) Cueva Torres, Dr., F. (2021). Epidemiología y Manejo de las Enfermedades de la Aorta — SIAC. Sociedad Interamericana de Cardiología.

(2) RadiologyInfo para pacientes (2020). Materiales de Contraste.

(3) World Heart Federation (2016) World Congress of cardiology & Cardiovascular Health

(4) Ferreira, J (2017) Actualidad en nefropatía por medio de contraste. Universidad Pontificia Bolivariana, Medellín — Colombia. ELSEVIER Volumen 14 Número 2

Integrantes

Diego Chiza, Ana Gayosso, Gabriela Jiménez, Paola Peralta, Patricia Román José Daniel Sacoto, María Teresa Vergara, Hilario Villamar, David Medrano.

Presentación del proyecto: DemoDay

Repositorio

El código fuente de este proyecto se puede encontrar en: github

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

basura

Inteligencia artificial para la detección de Aglomeración de Basura

Figura 1.- Acumulación de basura en las calles.

Latam online. Segunda Edición. 2021

En la actualidad, los desechos municipales a nivel mundial podrían aumentar un 70% en los próximos 30 años, provocando así montones de basura acumulados alrededor del mundo (Banco Mundial, 2019). Es por esto que, si no se toman medidas urgentes, se espera un futuro donde el convivir con basura sea algo normal para la sociedad.

Debido a las consecuencias de las acumulaciones de basura no controladas ni planificadas se deben tomar diferentes estrategias que amortigüen sus ocurrencias en distintos puntos del mundo.

Descripción del problema

El problema de la acumulación de basura no solo radica en el mal olor que se percibe, sino la imagen de insalubridad, desorden y hasta de inseguridad que la basura se desparrama en las calles genera. En las calles se puede encontrar desde cartones y pañales, hasta cáscaras de frutas, plástico y sábanas viejas. Todo esto al pie del canal de aguas lluvias, en cuyas bases también es común ver flotando todo tipo de desechos.

Según el Ministerio del Ambiente, en el Ecuador la más crítica es la Costa, en donde apenas el 10% de los municipios dispone de un relleno sanitario, manual o mecanizado; en la región Sierra son 25%, y en el Oriente, el 24%. Por lo que las cifras de basura dentro del país aumentan diariamente tal y como se visualiza en la Figura 2.

Figura 2.- Cifras de la basura en el Ecuador.

En la figura 2.1, se visualizan algunas de las consecuencias de la acumulación de basura como lo son: daños en la infraestructura pública, aumento de enfermedades y plagas, inundaciones en las calles, obstrucción en los alcantarillados y entre otros.

Figura 2.1.- Consecuencias de la acumulación de basura.

En la ciudad de Guayaquil, las penas por desechar desechos sólidos no peligrosos al margen de la frecuencia y horarios establecidos y acumular la basura en parterres y aceras; van desde los $80 a $500 .

¿Cómo nace nuestro proyecto?

Ciudad Limpia se basó en la siguiente pregunta : ¿Cómo identificar de manera oportuna la acumulación de la basura no controlada en la ciudad de Guayaquil para minimizar el impacto en la sociedad? Por tal motivo creamos una aplicación que nos permite contribuir en la recolección de basura. Haciendo participe a la ciudadanía en mejorar la limpieza de la ciudad y que alguna empresa se interese en nuestra herramienta tecnológica basada en Inteligencia artificial.

Integrantes del proyecto

Figura 3.- Equipo morado — SaturdayAI –ÉPICO 2021

Experiencia del equipo

Manuel Ahumada “Fue una experiencia de aprendizaje práctico: enfocado en el hacer para adquirir los temas y conceptos presentados. Eso refuerza el conocimiento.”.

Patricia Andrade “Mi experiencia fue muy enriquecedora debido a todo el nuevo conocimiento que aprendí. Además, me gustó mucho el compartir ideas con compañeros de distintos campos para solucionar un problema práctico”.

César Villarroel “Fue una experiencia de aprendizaje práctico: enfocado en el hacer para lograr adquirir los temas y conceptos presentados. Eso refuerza el conocimiento.”.

Ingrid León “La experiencia que se obtiene en esta modalidad es buena, El poder compartir conocimientos, desafíos y riesgos hacen que seamos más profesiones. Me quedo con una frase “«Son dos las opciones básicas: aceptar las condiciones como existen o aceptar la responsabilidad de modificarlas»”, entonces podemos mejorar siempre”.

Objetivo general

En la siguiente figura 4, se puede visualizar la idea principal del proyecto.

Desarrollar una aplicación basada en Inteligencia Artificial que permita identificar aglomeraciones de basura en la vía pública de zonas urbanas.

Figura 4.- Propuesta de valor del proyecto.

Planteamiento de la solución

Se proyecta que mediante la colaboración de los ciudadanos se cree una concientización donde formen parte de la limpieza y cuidado de la ciudad. ¿Cómo lo van a hacer? Fácil, a través de la app “Ciudad Limpia” , en donde pueden tomar una foto para identificar y reportar la acumulación de basura de un sector determinado. Además, la aplicación registra la fecha, hora y ubicación del problema. Dicha aplicación estará basada en Inteligencia Artificial que permitirá identificar aglomeraciones de basura en la vía pública de zonas urbanas y fomentar un plan de acción inmediata para las autoridades sanitarias.

Figura 5.- Diagrama General de la solución.

Conjunto de datos

El conjunto de datos que se formó fue basado en descarga de imágenes de manera individual desde el Internet, videos transformados en fotogramas. Además, se sacó la plataforma de Kaggle y Google Street view donde se pudo obtener una gran cantidad de dataset de imágenes de aglomeración de basura.

Figura 6.- Medios para obtener el conjunto de datos

Selección del modelo

Para la selección de los modelos se obtuvo las siguientes consideraciones:

  • Fácil implementación.
  • Rendimiento del modelo.
  • Limitación de cálculo.

Estas consideraciones son debido a los recursos que se tienen para realizar el objetivo general. Los modelos a desarrollarse son:

  • CCN Personalizado.
  • VGG-16.
  • inicioV3.

Técnicas implementadas

La principal técnica utilizada para compensar el conjunto de datos de tamaño limitado por la limitación de búsqueda de imágenes en Google fue la “aumentación de datos” realizada por la librería de keras “ImageDataGenerator”.

Data augmentation

El aumento de datos es la generación artificial de datos por medio de perturbaciones en los datos originales. Esto nos permite aumentar tanto en tamaño como en diversidad nuestro conjunto de datos de entrenamiento. En el computer vision, esta técnica se convirtió en un estándar de regularización, y también para mejorar el rendimiento y combatir el overfitting en CNNs.

Figura 7.- Ejemplo de aumento de datos.

En los tres modelos seleccionados se consideraron la técnica de aumento de datos con el objetivo de normalizar o re-escalar los píxeles en un rango de 0 a 1. Además de modificar las imágenes del conjunto tren con el objetivo de que existe una distinción en cada una de las imágenes seleccionadas tanto de ancho, largo, amplitud, rotación y escalamiento. A continuación, se observa el código donde se transforman las imágenes de entrenamiento con los parámetros seleccionados:

Figura 8.- Código del entrenamiento de imágenes.

CNN personalizado

En el modelo CNN personalizado se aplicaron técnicas de regulación, callbacks y por último keras tuner.

Keras Tuner

Keras Tuner es una librería muy sencilla de utilizar que simplifica en gran medida complejidad el proceso de aplicar de optimización de hiper-parámetros sobre redes de neuronas profundas construidas mediante Keras, ofreciéndonos un amplio grado de versatilidad para optimizar tanto la estructura de nuestra red como la configuración de los parámetros de algunos de los algoritmos implicados en el proceso de entrenamiento.

Figura 9.- se puede constatar el valor del ensayo y exactitud

Keras Tuner mientras va analizando cada trial, verifica el mejor valor de val accuracy infiriendo que es la mejor configuración de la arquitectura y la procede a guardar la mejor configuración de la arquitectura del modelo (número de capas) con el cual tiende a lograr la mejor métrico.

Figura 10.- código del modelo cnn

Arquitectura del modelo cnn personalizado cuenta con regularizadores, convolución, keras tuner

InceptionV3

Figura 11.- muestra el pre-entrenamiento

Se define el modelo pre-entrenado inceptionv3, valida el tamaño de las imágenes de input con que se entrena:

Figura 12.- uso de la arquitectura mixed7

Se congela la arquitectura en la capa “mixed7” para después alterarla añadiendo capas basadas en la predicción de nuestro modelo que es una clasificación binaria por el cual la última capa tiene activación sigmoidal la cual nos ofrece como resultado la probabilidad de que si un caso es positivo o negativo

VGG-16

Figura 13.- Características adicionales con VGG16

Se define el modelo pre-entrenado vgg16 y valida el size de las imágenes de input con que se entrena

Figura 14.- aumento de capas (clasificación binaria)

Se procede a aumentar las capas basadas en la predicción de nuestro modelo que es una clasificación binaria por lo cual la última capa tiene activación sigmoidal la cual nos ofrece como resultado la probabilidad de que si un caso es positivo o negativo

Análisis de resultados

CNN personalizado

Figura 15.- gráfica del modelo cnn personalizado con 20 épocas

En la evaluación del modelo se entrenó con 20 épocas. Sé puede verificar que no logra converger en su totalidad. Logra una accuracy de la evaluación del conjunto test del 78 %

InceptionV3

Figura 16.- grafica del modelo pre-entrenado con 50 épocas

En la evaluación del modelo el cual se entrenó con 50 épocas se puede analizar que logra converger en totalidad a partir de la época 28 en adelante, con una precisión de la evaluación del conjunto test del 85 %

VGG-16

Figura 17.- gráfica del modelo pre-entrenado con 10 épocas

En la evaluación del modelo el cual se entrenó con 10 épocas se puede analizar que logra converger, con una precisión de la evaluación del conjunto test del 84 %

A continuación, mostramos las predicciones de los modelos:

InceptionV3

Predicción de la carpeta test

Se obtiene las probabilidades de predicción del conjunto test

Primera prueba sin basura

Prueba del modelo prediciendo una imagen sin basura dando como resultado una probabilidad menor a un umbral de 0.5 se la identifica como una no aglomeración.

Segunda prueba con basura

Prueba del modelo prediciendo una imagen con basura generando una probabilidad mayor a un umbral de 0.5 se la identifica como una aglomeración.

Tercera prueba con imagen y muchos colores

Prueba del modelo prediciendo una imagen falsa positiva intentando romper la predicción en consecuencia se obtiene una probabilidad menor a un umbral de 0.5 se la identifica como una no aglomeración

VGG-16

Predicción de la carpeta de test

Se obtienen las probabilidades de predicción del conjunto test

Primera prueba sin basura

Prueba del modelo prediciendo una imagen sin basura dando como resultado una probabilidad menor a un umbral de 0.5 se la identifica como una no aglomeración

Segunda prueba con basura

Prueba del modelo prediciendo una imagen con basura mostrando una probabilidad mayor a un umbral de 0.5 se la identifica como una aglomeración

Tercera prueba con imagen de diferentes colores

Prueba del modelo prediciendo una imagen falsa positiva intentando romper la predicción en consecuencia se obtiene una probabilidad menor a un umbral de 0.5 se la identifica como una no aglomeración

Métricas del modelo elegido: InceptionV3

Matriz de confusión

En la matriz de confusión podemos deducir que está prediciendo aceptablemente, pero puede mejorar la predicción de los falsos negativos esto se puede solucionar aumentando imágenes de positivos para que el entrenamiento del modelo mejore los positivos

Métricas

Las métricas obtenidas son aceptables con un f1 score del 85 % de predicción para casos negativos y un 84 % para casos positivos, esto confirmaría la teoría de aumentar los datos en positivos

Aplicación móvil (“Ciudad Limpia”)

Por qué elegimos App Inventor?

En la actualidad, existen muchas maneras de desarrollar aplicaciones en dispositivos móviles que cumplen con una función en específico y son compatibles con distintos sistemas operativos.

Es por esto, que se seleccionó como herramienta de programación y desarrollo de nuestra App “Ciudad Limpia” al entorno de App Inventor . Mediante esta plataforma se puede programar en JavaScript de manera fácil y sencilla debido a que utiliza una programación en bloques que permite un mayor entendimiento y uso por parte del usuario.

Figura 18.- Entorno de App Inventor

Arquitectura

Con respecto a la arquitectura de nuestra aplicación “Ciudad Limpia”, se tiene los siguientes pasos a seguir, tal como se observa en la siguiente ilustración ():

Figura 19.- Arquitectura de la aplicación

Conexión de App Inventor con Google Colab

La conexión de la aplicación “Ciudad Limpia” con el modelo creado a través de Google Colab se realiza a través de la creación de un servidor local expuesto al Internet para el acceso de la aplicación móvil utilizando ngrok. Realizando una petición POST desde APP Inventor, se realiza el envío de la imagen codificada en bit64 al servidor el cual ejecuta el modelo y devuelve el resultado obtenido clasificado como aglomeración o no aglomeración de basura.

Funcionalidad de la aplicación “Ciudad Limpia”

Con respecto al entorno y manejo de la App “Ciudad Limpia” se consideran tres botones dentro de la interfaz con distintas funciones al momento de procesar una fotografía:

· Usuario “toma foto”: En este caso, el usuario utiliza la cámara de su dispositivo para capturar la imagen de la aglomeración de basura en su sector.

· Usuario selecciona “foto de galería”: En este caso, el usuario selecciona una foto que tenga registrado sobre la aglomeración de basura en su sector que encuentre dentro de su galería de imágenes de su celular.

· Usuario “sube foto”: En este caso, el usuario sube la foto de la aglomeración de basura en su sector para que sea registrado y notificado a las autoridades pertinentes y se pueda visualizar dentro de la aplicación el resultado de si existe o no una aglomeración.

Almacenamiento de datos

Una vez realizada la predicción de la aglomeración de la basura dentro de la aplicación se procede a crear una base de datos a través de la aplicación de Google drive en extensión .csv, en donde se consideran los siguientes parámetros:

– Longitud

– Latitud

– Resultado de la predicción del modelo

– ID de la imagen capturada.

A continuación, se puede observar el archivo final generado con todos los datos que ha recolectado:

Funcionamiento de la interfaz

Herramienta BI

De acuerdo a los resultados que genera el modelo y los datos que guarda la aplicación web. Hemos considerado por uso en el mercado, la facilidad de uso, mejor visualización de objetos y desarrollar el tablero en Power BI.

Power BI es una herramienta que se utiliza principalmente para crear cuadros de mando que facilitan la toma de decisiones.

La información se puede actualizar de manera automatizada o manual y permite la compartición de los informes mediante la propia herramienta.

Por todo lo antes mencionado se procedió en la utilización de dicha herramienta.

Extracción de datos

Una vez que la aplicación web guardó los datos, realizamos los siguientes pasos que muestra la siguiente gráfica.

Figura 20.- pasos de la extracción de datos

Mediante los campos: latitud, longitud, timestamp, aglomeración (1-Si0-No). Creamos un tablero que contenga varios objetos como KPI ‘s, gráficos de barras, gráficos pastel y hasta mapas. Así de manera visual tener una mejor comprensión de los resultados.

Figura 21.- Mapa de calor de la ciudad de Guayaquil

Dicha información nos permite poder identificar a través de un mapa en qué puntos de la ciudad tenemos más aglomeraciones de basura, en qué fechas y día se identificó la mayor cantidad de aglomeración y hacer una mejora en cuanto a la recolección de basura.

Recursos

· Basura: los números rojos de Ecuador. (2019, 6 marzo). Plan V. https://www.planv.com.ec/historias/sociedad/basura-numeros-rojos-ecuador

· F., & de Franspg, V. T. L. E. (2020, 20 septiembre). Generación de datos artificiales (Data Augmentation).

https://franspg.wordpress.com/2020/01/27/generacion-de-datos-artificiales-data-augmentation/#:%7E:text=Data%20augmentation%20es%20la%20generaci%C3%B3n,set%20de%20datos%20de%20entrenamiento

· World Bank Group. (2019, 6 marzo). Convivir con basura: el futuro que no queremos. World Bank. https://www.bancomundial.org/es/news/feature/2019/03/06/convivir-con-basura-el-futuro-que-no-queremos#:%7E:text=Se%20proyecta%20que%20la%20r%C3%A1pida,podr%C3%ADa%20ser%20la%20nueva%20normalidad.

Integrantes

  • Ingrid León A.
  • Alessandra Palacios
  • Manuel Ahumada
  • César Villarroet
  • Patricia Andrade
  • Iván Ortiz
  • Diana López
  • Diego Sánchez

Presentacion del proyecto: DemoDay

Repositorio

Toda la explicación en cuanto a implementación, código, entrenamiento del modelo, uso de interfaz y herramienta BI se puede encontrar en el siguiente link:

https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/ciudadlimpia

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Descubriendo la calidad del sueño con técnicas de Machine Learning

Latam online. Segunda Edición. 2021

El brote de COVID-19 y las respuestas sociales adoptadas para combatir su propagación (por ejemplo, el confinamiento y el distanciamiento social) han tenido consecuencias de gran alcance, pero han brindando también una oportunidad única para examinar los efectos que el estrés crónico y la incertidumbre pueden tener en los patrones de sueño de la población en general.

Está bien documentado que el sueño puede verse afectado cuando se está bajo estrés y que los cambios en el sueño pueden tener consecuencias negativas en las emociones y el bienestar mental. Un metanálisis reciente mostró que la pandemia de COVID-19(1) ha provocado una alta prevalencia de trastornos del sueño, que afectan aproximadamente al 40 % de las personas de la población general.

Se sabe que además del estrés debido a la pandemia por COVID-19, hay otros factores que podrían alterar la resiliencia mostrada bajo estrés, por ejemplo,la falta de interacción social, la falta de ejercicio físico, el bienestar económico etc.

Este proyecto tiene como objetivo determinar qué factores pueden afectar la calidad del sueño de la población cuando están sujetas a situaciones de estrés crónico como es el caso de una pandemia. Predecir dichos factores permitiría emitir consejos útiles para la población, de tal forma que estén mejor preparados para futuras pandemias y/o situaciones de estrés crónico que permitan mitigar el impacto emocional causado por la mala calidad de sueño.

Metodología

La base de datos seleccionada para este proyecto ha sido la publicada por la Universidad de Boston2, que consiste de una serie de encuestas realizadas a 1,518 personas a través de redes sociales para evaluar el impacto de la pandemia en el bienestar emocional y mental de las personas dependiendo diversos factores como la edad, el impacto económico, la condición de minoría y o el estado de riesgo.

Una vez seleccionada la base de datos proseguimos a la limpieza y procesamiento de los datos. Después de este proceso, el número de variables de nuestra base de datos fue de 216 y el tamaño de la muestra se redujo a 839 sujetos debido a que no toda la información estaba completa.

Las variables principales incluyen información demográfica (edad, identidad de género, ingresos, etc.), información relativa a los hábitos de sueño, niveles de ansiedad, regulación emocional cognitiva, y personalidad, entre otras.

La métrica elegida para evaluar la calidad del sueño fue la variable del índice total de calidad del sueño de Pittsburgh (PSQI), que tiene una escala de 0 a 21. En dicha escala, una puntuación global de 5 o más indica una mala calidad del sueño; cuanto mayor sea la puntuación, peor será la calidad.

Análisis del dataset

Observamos la distribución de los datos

Histograma Calidad del sueño por género
Puntuación sueño
Barplot Calidad del sueño por estado civil
Barplot Calidad del sueño por ingresos

Observamos la correlación que entra la calidad de sueño con otras variables no asociadas al sueño:

  • Diferencia de cronotipo pre y post covid
  • Variable de ansiedad (No consigue dejar de preocuparse)
  • Variable de personalidad (Se considera relajado)
  • Variable de ansiedad social (Miedo a extraños post covid)

Modelos

Clasificación

En el conjunto de datos, nuestra métrica elegida para evaluar toma valores del 0 al 18 (no se han observado casos de 19 a 21). Si tomamos estos valores como si fueran clases o subconjuntos podemos aplicar un método de clasificación.

Hemos elegido aplicar el algoritmo de RandomForestClassifier con el que en un principio obtenemos valores muy bajos de precisión rondando el 0,20. A continuación, probamos a recudir las clases agrupando los valores originales de la métrica. A medida que vamos reduciendo las clases observamos que los valores de precisión van mejorando, para 6 clases el resultado mejora en torno a 0,5 y para 4 clases el resultado llega a 0,7.

Para tener una explicación de estos resultados mostramos los shap values de las predicciones:

Podemos observar que las variables que aparecen con más peso, son las que están directamente ligadas con datos de sueño (psqi_*). Las primeras de todas ellas son si la persona ha recurrido a medicinas para dormir, la percepción que declara de su calidad de sueño, y el tiempo que tarda en conciliar el sueño. Dentro de estas variables también observamos que tienen impacto datos de personalidad (big5_*) , como si se considera una persona relajada, o ansiedad (gad_*), como la capacidad de dejar las preocupaciones.

Según lo observado podemos concluir que el algoritmo está funcionando correctamente y que los datos en los que se basa para realizar las estimaciones son los esperados. Creemos que el número de observaciones con las que contamos son muy bajas para el número de clases a predecir y que aumentando los datos se podrían mejorar las predicciones.

Regresión

Para la regresión hemos elegido cuatro algoritmos distintos: RandomForest, Logistic, GradientBoosting y HistGradientBoosting.

El algoritmo que produjo el mayor coeficiente de determinación fue el de GradientBoosting, con un R2=0.9. Lo que significa que el 90% de los puntos se ajustan a la línea de regresión.

Una vez seleccionado el mejor algoritmo intentamos utilizar la optimización de los argumentos usando RandomizedSearchCV pero no obtuvimos nada mejor. Además probamos reducir el número de variables mediante el uso de PCA. Obtuvimos el número óptimo de variables y redujimos el tamaño de la base de datos a ese número, en este caso 138, pero los resultados empeoraron, la R2 disminuyó hasta 0.57.

Análisis PCA para reducir el número de variables

Por esta razón decidimos quedarnos con el resultado obtenido con el algoritmo de GradientBooster como la mejor opción para predecir la calidad del sueño.

Conclusión

Es posible predecir la calidad del sueño con un 90% de precisión. Pudimos observar que la calidad del sueño depende en mayor medida de variables relacionadas con:

  • Medicación
  • Tiempo que toma a la persona conciliar el sueño
  • Entusiasmo por llevar a cabo cosas
  • Manejo del estrés
  • Control de las preocupaciones

Esta predicción, aunque intuitiva, puede ser de utilidad para implantar medidas que puedan ayudar a la población a mejorar la calidad del sueño en situaciones de estrés crónico como la sufrida durante una pandemia.

En el futuro, este proyecto se podría mejorar aumentando el número de muestras de la base de datos actual.

Referencias

1. Jahrami, H. et al. Sleep problems during COVID-19 pandemic by population: a systematic review and meta-analysis. J Clin Sleep Med, jcsm-8930. (2020).

2. Cunningham, T.J., Fields, E.C. & Kensinger, E.A. (2021) Boston College daily sleep and well-being survey data during early phase of the COVID-19 pandemic. Sci Data 8, 110. https://www.nature.com/articles/s41597-021-00886-y

Integrantes

Presentación del proyecto: DemoDay

¡Más Inteligencia Artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Machine Learning para prevenir el acoso online de menores

De la navegación segura al miedo a perderlo.

Cuando tus hijos navegan en internet, ¿aplicas o configuras algún filtro de control parental?

Latam online. Segunda Edición. 2021

En la actualidad, el hostigamiento u acoso sexual online es conocido en el lenguaje anglosajón como grooming online; donde un adulto logra tener contacto a través de un medio tecnológico contra un menor de edad, siendo el objetivo del abusador atacar a través de interacciones como: acoso a su moral, hablar de sexo, conseguir material íntimo o acordar un encuentro sexual.

El grooming online se ha incrementado a raíz del confinamiento por el COVID-19. En Argentina aumentó más del 30% en el 2020(2), en datos del INEGI del 2019 arrojan que en México creció el 27%(3) , mientras que el diario ABC de España, reportó un incremento del 410% en los últimos años (4).

Contexto… please!

Los aplicativos actuales para el control parental recurren a bloqueos de aplicaciones, algunos sitios inapropiados, evitar compras online o el acceso de algún virus a los dispositivos como celulares, tablets o computadoras de niños y adolescentes. Sin embargo ninguno analiza conversaciones en redes sociales y tampoco clasifica las que puedan ser catalogadas como peligrosas.

Derivado del confinamiento por el COVID-19 los niños y adolescentes se han visto más vulnerables debido a la necesidad de utilizar los dispositivos móviles como parte de sus actividades diarias, gran parte de eso fue para tomar clases virtuales, realizar tareas y en otras ocasiones como medio de entretenimiento y comunicación, al verse limitados por no poder salir y compartir tiempo con familiares y amigos.

La nula supervisión ha permitido que menores de edad hayan experimentado situaciones indeseadas sin el conocimiento de los adultos.

De acuerdo al sitio salud con lupa, el 39% de los acosos se han experimentado por Facebook, seguida por el 23% en Instagram y un 14% por WhatsApp (5).

La propuesta

Tótem significa protector

Tótem = “Déjalo Navegar sin Preocupaciones”

Sin tanto rollo, esto es lo que hicimos.

Actualmente contamos con un dataset de conversaciones en inglés, las cuales son analizadas y catalogadas como normales o peligrosas, una vez obtenido esté resultado se enviará una notificación al padre o tutor si se detecta una conversación inapropiada.

¡¿Cómo hicieron eso?!

Aquí te explicamos qué fue lo que aplicamos para obtener los resultados que te mostraremos más adelante…

Fase 1 (Aquí vamos…)

Obtención de los datos

Los datos fueron adquiridos del proyecto PAN Lab 20126. La carpeta con los datos fue solicitada y se nos concedió el permiso para usarla. Revisando la data nos encontramos con conversaciones de diversa duración, en las que los participantes tenían diferentes formas de escribir y el archivo del corpus que tenía un formato .xml. Por lo que se procedió con la conversión de la data a un formato .csv, “Comma Separated Values”, para poder proceder con la siguiente fase.

Fase 2 (Analicemos esto…)

Limpieza de datos

La segunda tarea presentó un grado de dificultad alto, debido al ruido de la data. Por lo tanto se siguieron los siguientes pasos.

  1. Se eliminó cualquier tipo de puntuación.
  2. Se convirtieron los números a palabras usando la librería num2words.
  3. Se buscaron abreviaturas y textos con jergas cibernéticas como: “u” para “you”, “ur” para “your”, “what ‘s” para “what is”, entre otras. Además se creó un diccionario con estas palabras nuevas.
  4. Se eliminaron las stopwords como: the, and, that, a, any, an, be, with. Entre otras.
  5. Se eliminaron emojis, URL, hashtags y cualquier tipo de valor alfanumérico.
  6. Se empleó la técnica de lematización, para llevar todos los verbos a su forma en infinitivo. Para así crear incrustaciones a partir de palabras más simples.
  7. Se exploraron los datos, analizando las 100 palabras más comunes en las conversaciones de los predadores.

Fase 3 (Entrenemos esto…)

Vectorización

La extracción de características representó un desafío particular, en primera instancia se optó realizarlo con base a las palabras más frecuentes presentes en las conversaciones de depredadores; no obstante, varias de estas eran de uso común, por lo que fue necesario analizar alternativas para lograr un óptimo desempeño. Es así que se optó por el uso del método TF-IDF (Term Frequency — Inverse Document Frequency), siendo una de sus características el resaltar la importancia de una palabra en un conjunto de documentos (corpus). En ese sentido, para transformar la secuencia de palabras (provenientes de las conversaciones) a vectores de características con representaciones numéricas se usó el vectorizador TF-IDF (TfidfVectorizer) de la librería de scikit-learn. Este transformador permitió generar una matriz de características, con una representación adecuada para realizar el entrenamiento del modelo. Para dicho propósito, se dividió el dataset en:

  • Datos de entrenamiento: 80%
  • Datos de testeo: 20%

Entrenamiento

Para el entrenamiento del modelo se usó la librería scikit-learn y se escogió el modelo Support Vector Machines (SVM) para emplear un clasificador binario.

Los hiper parámetros fueron:

  • Parámetro de regularización ©: 10
  • Kernel: RBF
  • Coeficiente de kernel (gamma): Scale

Evaluación

Durante la evaluación del modelo se obtuvieron los siguientes resultados:

Siendo la matriz de confusión la siguiente:

Los resultados del modelo muestran una notable mejora en comparación a aquellos correspondientes al Baseline:

El modelo desarrollado se desplegó en una aplicación web haciendo uso de la herramienta Streamlit, en la cual a través de la interfaz se proporciona la conversación a ser analizada y la aplicación muestra la alerta si es una aplicación normal o peligrosa, a continuación se observa algunos ejemplos del funcionamiento:

Resultado del análisis en una conversación normal
Resultado del análisis de una conversación peligrosa

¿Te hace sentido nuestra propuesta?

Hasta ahora hemos podido analizar y clasificar conversaciones inapropiadas que se pueden reportar y de está forma proporcionar herramientas a los padres para el monitoreo de aplicaciones cuya función no es interferir con la privacidad sino prever situaciones peligrosas en conversaciones online.

En el futuro, sería genial desarrollar estas alertas al alcance de padres de familia como parte de las restricciones de algunas aplicaciones, que se preocupan por aplicar reglas de control parental para los usuarios vulnerables que hacen uso de sus servicios, tales como: https://www.facebook.comhttps://www.instagram.comhttps://www.tiktok.comhttps://www.whatsapp.com, etc.

Referencias

  1. http://www.eset-la.com/micrositios/proteccion-infantil/descargar/grooming_chicos_eset.pdf
  2. https://www.unidiversidad.com.ar/por-la-hiperconectividad-en-cuarentena-el-grooming-aumento-un-30-en-argentina
  3. https://alumbramx.org/ciberacoso-y-grooming-contra-ninas-ninos-y-adolescentes-en-aumento-por-covid-19/
  4. https://www.abc.es/familia/padres-hijos/abci-grooming-y-aumentado-410-por-ciento-ultimos-anos-201903081632_noticia.html?ref=https%3A%2F%2Fwww.google.com%2F
  5. https://saludconlupa.com/la-vida-de-nosotras/ninas-y-mujeres-hablan-del-acoso-en-linea/
  6. http://pan.webis.de
  7. https://www.welivesecurity.com/la-es/2020/05/20/grooming-crece-durante-cuarentena/

Aquí puedes ver un video que describe nuestra propuesta

Integrantes

Presentación del proyecto: DemoDay

Repositorio

Y si quieres ver la fuente de datos y el código que aplicamos, lo puedes encontrar en GitHub:

https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/TotemIA

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Contenedor de residuos educativo inteligente

“Aprendí que nunca somos demasiado pequeños para hacer la diferencia”

Greta Thunberg

Latam online. Segunda Edición. 2021

Es una de las frases celebres de Greta Thunberg, haciendo alusión al poder de los jóvenes de cambiarlo todo, en particular su forma de ver el mundo y las oportunidades de hacer cosas nuevas en pro de su futuro.

Pero… y sí ese futuro se ve gris y contaminado ¿Entonces cómo pueden hacer la diferencia hoy?

Mascota de conciencIA ecológica

Actualmente, muchos jóvenes se preocupan por los problemas ambientales, volviéndose actores proactivos en la búsqueda de soluciones, esta urgencia de cambio nos motivó a crear ConciencIA Ecológica para enseñar a los niños la forma correcta de clasificar sus residuos de una manera divertida, promoviendo las prácticas de las (4R), Reducir, Reutilizar, Reciclar y Recuperar, utilizando tecnología e inteligencia artificial.

Este equipo conformado por siete (07) apasionados de la inteligencia artificial ha unido tres países como: Ecuador, México y Venezuela, participando en la 2da edición de Saturdays.AI LATAM y a través de su método build to learn elaboró un proyecto basado en Deep Learning llamado ConciencIA Ecológica, enfocado en estudiantes de educación básica de la ciudad de Guayaquil — Ecuador.

Si quieres saber más te invito a seguir leyendo.

Integrantes del equipo del proyecto ConciencIA Ecológica

El problema

De acuerdo al Instituto Nacional de Estadísticas y Censo (INEC), en el año 2017 cada ecuatoriano produjo 860 gramos de residuos sólidos en un día, a pesar de que este número se encontró por debajo del kilogramo de basura por día en América Latina y el Caribe, ese año se tuvo un crecimiento de 48% con respecto al año anterior, por lo que no es sorprendente imaginar, que si no se tomaron medidas a tiempo, estos números sean mayores hoy en día.

De la basura recolectada el 96% se entierra en rellenos sanitarios, celdas emergentes o botaderos a cielo abierto y solo el 4% se recicla. Para tener una idea de las razones por la que el reciclaje es bajo, en el 2016 el INEC realizó una encuesta de hogares detectando que el 59% de los hogares no clasificaron residuos.

Cuando se le preguntó las razones por las cuales no clasificaban, el 43% respondió por la falta de contenedores específicos. Sin embargo, el 57% restante se debió a problemas culturales: “no saben clasificar” (18%), “no le interesa” la clasificación de residuos (16%), dicen “no conocer los beneficios” (15%) o el restante (8%) no confía en los sistemas de recolección de basura.

De esta realidad, Guayaquil es la primera ciudad que produce basura generando el 28% del total de desechos diarios del país, y la más elevada a nivel de porcentaje de desinterés: el 29% de los ciudadanos no le interesa clasificar, el 15% no conoce los beneficios y el 6% no sabe clasificar, este desinterés es seguido por Ambato (20%), Machala (14%), Quito (11%), Cuenca (9%).

Por esta razón nuestro proyecto centra sus esfuerzos en esta ciudad y abre su primer capítulo llamado Guayaquil.

Problema dectectado

Los niños no sólo son el futuro, también son el presente del mundo

Los niños de hoy serán los adultos del mañana, si queremos cambiar la forma como las personas interactúan con nuestro planeta, debemos empezar desde edades tempranas creando hábitos amigables con el ambiente, y estos pueden estimularse en la escuela a través de la educación y la creación de espacios destinados a las buenas prácticas ambientales.

Conscientes de los anterior nace la idea de ConciencIA Ecológica el cual busca enseñar a los niños a clasificar sus residuos de forma divertida.

Este proyecto se enfoca en disminuir el desinterés y el desconocimiento en la clasificación de residuos de estudiantes de educación básica en la ciudad de Guayaquil, a través de contenedores con visión inteligente que oriente a niños desde los 5 años hasta los 14 años, en la correcta clasificación y gestión de residuos, promoviendo las prácticas de Reducir, Reutilizar, Reciclar y Recuperar (4R).

La propuesta une varios conceptos, primero buscando que el niño desde la edad escolar se familiarice con la gestión de residuos, orientándose a través de audio y luces hacia el contenedor correcto, también que gestione correctamente el residuo en su contenedor contribuyendo a la clasificación desde el origen, y creando conciencia en el niño a través de mensajes educativos.

Los contenedores están pensados para poder medir el volumen de residuos y emitir una señal al encontrarse el recipiente lleno, esto permitirá a la escuela vaciarlo a tiempo y evitar daños en la compuerta del recipiente.

Génesis de conciencia ecológica

En este punto existía dos decisiones para el módulo central de ConciencIA Ecológica, la primera ubicar un Jason Nano Nvidia, que condensa en su interior la cámara, la capacidad de cómputo y la posibilidad de conectar el micro controlador, o ubicar una Tablet reciclada, utilizar su cámara y alojar la capacidad de cómputo en la Tablet y que esta coordine la clasificación con las señales a los contenedores, las bocinas y las luces.

La decisión se tomó considerando la base del presupuesto que puede tener una escuela, por lo que la segunda opción parece ser la más viable, ya que por menos presupuesto se podrían llevar ConciencIA Ecológica a más escuelas. El equipo estimo 70$ considerando la donación de una Tablet reciclada.

Luego de decidir cómo realizar la clasificación, se pensó en qué se quería clasificar y utilizando la Norma Ecuatoriana INEN 2841, 2014, referente a la estandarización de colores para recipientes de depósito y almacenamiento temporal de residuos sólidos, se establecieron 5 clases: vidrio, papel, cartón, plástico, orgánico.

Que finalmente se agruparon en:

  • En un contenedor de color verde: Orgánicos.
  • En un contenedor de color azul: Plástico.
  • En un contenedor de color blanco. Vidrio.
  • En un contenedor de color gris: Cartón y Papel.
  • En un contenedor negro: Desechos, el cual lo establecimientos como los porcentajes de predicción más bajo que presente el modelo.

Pasos para seguir

1. Dataset

Los datos fueron seleccionados de tres fuentes: Un repositorio abierto de imágenes de desechos llamado Waste datasets review”, en particular con el data set Trashnet, que contiene 2527 imágenes; fotos en páginas web especializadas de fotografías y fotos captadas desde el celular relacionadas con productos que se consideró etiquetar relacionadas al ámbito escolar.

El dataset se construyó con un total de 5000 imágenes en 5 clases: vidrio, papel, cartón, plástico, orgánico. Para el proyecto no se consideró la clase metal. El dataset se dividió en 80% entrenamiento y 20% para validar.

2. Procesamiento: el ABC

Esta fue la fase más larga por el tiempo invertido para hacer los cuadros delimitadores (bounding box). Para el procesamiento se utilizó LabelImg, el cual es una herramienta gratuita de anotación de imágenes gráficas disponible en pip para python3.0 o superior.

Para cada etiquetado se cuidó encerrar el objeto dentro del cuadro delimitador, lo más ajustado posible a la imagen y haciendo tantos cuadros como objetos existieran.

Ejemplo de la utilización de la herramienta LabelImg

Las imágenes fueron guardadas en formato Yolo (*.txt). Este formato establece la clase y las coordenadas de los cuadros delimitadores con la siguiente estructura:(c, xn, yn, wn, hn)

5 Formato yolo (*.txt)

Donde:

  • c : es el número de la clase, en este proyecto hay 5 clases, donde c puede tomar el valor 0 para cartón, 1 papel, 2 vidrio, 3 plástico y 4 orgánico.
  •  xn: centro del cuadro delimitador normalizado en la dirección x.
  • yn: centro del cuadro delimitador normalizado en la dirección y.
  • wn: ancho normalizado del cuadro delimitador (x).
  • hn: alto normalizado del cuadro delimitador (y).

3. El modelo

El modelo seleccionado fue el YOLOv5 (You Only Look Once). Este es un sistema de código abierto para la detección de objetos en tiempo real pre-entrenado con el dataset COCO, el cual hace uso de una única red neuronal convolucional (CNN) para detectar objetos en imágenes.

De acuerdo con la revisión bibliográfica, Yolo en su quinta versión es un buen algoritmo para detectar objetos en el campo de la alimentaciónrobóticasalud, entre otros, logrando un buen posicionamiento y reconocimiento de objetos, más precisos que otros algoritmos, incluso versiones anteriores de Yolo. Este equipo seleccionó YoloV5, por considerarlo un algoritmo robusto con buenos resultados en investigaciones recientes relacionadas con detección.

4. Resultados:

El modelo se entrenó 4 veces utilizando la técnica de “Transferencia de aprendizaje, llegando a obtener una mejora del 50% en el último entrenamiento con respecto al primero. En el modelo se usaron las siguientes variables:

  • Modelo: Se usó la versión Small (Yolov5s) ya que es el más rápido de entrenar y permitió tener una buena idea del comportamiento de la base de dato y del modelo frente al problema. Sin embargo, la desventaja de la rapidez es que se sacrifica precisión en comparación con otras versiones como la Extra Large (Yolov5x)
  • Pesos (weights): para el primer entrenamiento se utilizó los pesos predeterminados en Yolo, los cuales provienen del entrenamiento del data set COCO, llamado “yolov5.pt. Durante cada entrenamiento se generó un archivo con el mejor peso encontrado, el cual se utilizó para el siguiente entrenamiento.
  • Épocas: Se inició el entrenamiento con 10 épocas, llegando hasta 30 épocas.
  • Batch, se mantuvo fijo en 6 para todo el entrenamiento.
  • Tamaño de imágenes: El data set se configuro para que cada imagen tuviera un tamaño de 640 x 640.
Se aprecia las ultimas variables de entrenamiento

Los resultados de

  • Matriz de confusión
  • Precisión y Sensibilidad (Recall)

La matriz de confusión indica que tipo de error está cometiendo el modelo, en el caso de Yolo para el cálculo utiliza una confianza de 0,25 y un límite de IoU (Intersection over Union) de 0,45. Esto quiere decir que para clasificar un objeto este debe tener un 50% de probabilidad de estar en una clase.

La clase para la matriz de confusión en el cálculo de confianza de 0,25 y un límite de IoU (Intersection over Union) de 0,45

Yolo presenta su matriz en valores relativos, donde cada elemento de la matriz está normalizado al total de la columna, por lo que la suma de los valores de cada columna es igual a 1.

Para el data set, tenemos que el cartón lo clasifica relativamente bien, en el 72% de los casos reconoció esta clase, mientras el restante 24% lo clasificó como background. El vidrio lo reconoció en el 85% de los casos, mientras un 10% lo confundió con plástico quizás por la similitud de la transparencia. El papel un 59%, siendo este el valor más bajo, compartiendo un 8% con cartón, y un 32% con el background. Para el caso del plástico se obtuvo un 64% de asertividad, y el restante 34% con el background. Por último, en orgánico se obtuvo un 85% de verdaderos positivos y apenas un 13% de background.

La precisión promedio de todas las clases del modelo fue 0.748, la cual para este tipo de algoritmo es buena, nos indica que de cada 10 imágenes, aproximadamente 7 la clasifica correctamente. Su sensibilidad (Recall) fue 0.723, lo que es una buena medida de la cantidad de objetos por clase clasificados correctamente, en una clase determinada de cada 10 imágenes 7 son correctas, apenas 3 son falsos positivos.

Resultados de las métricas que nos muestra al obtener de la matriz de confusión

5. El prototipio: su crecimiento

Es importante mencionar que el alcance del proyecto se limitó a realizar el prototipado de ConciencIA Ecológica que consistió en el despliegue, la simulación de los componentes del hardware y un bosquejo de una aplicación que conecta la predicción del modelo con el hardware para clasificar imágenes de seis (6) tipos de residuos: orgánicos, vidrio, plástico, papel, cartón, desechos.

A continuación se explicará el funcionamiento del prototipo.

ConciencIA Ecológica consistirá en cinco (05) contenedores de diferentes colores y un módulo central donde se encontrará una Tablet con cámara. Los contenedores se diseñaron pensando en el tamaño de los niños y la forma más fácil de depositar el residuo en estos.

Diseño propuesto

Se buscará que el aprendizaje se realice a través de la interacción del niño con los contenedores, para ello el niño presentará un residuo a la cámara de la Tablet y a través de un modelo, se podrá reconocer hasta seis (6) tipos de residuos: orgánicos, vidrio, plástico, papel, cartón y desechos en general. Luego de reconocer el residuo, se enviará la predicción a una App alojada en la Tablet en el módulo central, la cual mostrará en pantalla lo reconocido y emitirá un sonido con el nombre del material categorizado y el color del contenedor.

Se presenta un bosquejo del proceso del prototipo

Al mismo tiempo, la Tablet enviará una señal a un micro controlador para abrir el contenedor destinado a recolectar el residuo y se enviará una señal que encenderá una luz ubicada en el contenedor. La App emitirá información sobre la práctica de las 4R para promover su uso. El niño finalmente se dirigirá al contenedor señalado y deposita el residuo.

Se presenta un bosquejo del proceso del prototipo

En cada contenedor se instalará un sensor ultrasónico para medir el volumen de residuos acumulados, el sensor enviará una señal a tres led´s que indicarán tres niveles: Disponible (verde), Intermedio (amarillo) y Lleno (rojo). Esto con el fin de evitar que los contenedores rebasen su capacidad, ya que, de producirse, pueden obstaculizar la apertura de la puerta con la entrada de residuos produciendo daños a los servomotores.

Estructura interna del contenedor (arriba sensor ultrasónico)

6. Despliegue

Por otro lado, la aplicación en esta fase no tendrá interacción física con el niño, por el momento servirá como centralizador de la información que viene del modelo y que dirige la acción de la apertura de los contenedores, mostrar en pantalla el resultado, emitir sonido y prender las luces de los contenedores.

La App debe ser iniciada por el administrador, el cual podrá comenzar a ejecutar Conciencia Ecológica a través de su usuario y contraseña.

Diseño de la aplicación propuesta

Inmediatamente, se despliega un menú el cual mostrará un botón de “comenzar a reciclar” que pondrá a Conciencia Ecológica en modo de reconocimiento de residuos. Al darle al botón se enciende el sensor de aproximación y el sensor óptico (cámara); a futuro se tiene pensado implementar un módulo de estadísticas visible en el menú, a los efectos de esta idea de proyecto se colocará como deshabilitado.

Diseño de la aplicación propuesta-iniciando el proceso

En el modo reconocimiento, cuando el sensor de aproximación se activa, se mostrará un mensaje para que el niño presente el objeto a la cámara, cuando detecte el objeto se realizará la predicción.

App en Android para clasificación, mostrando la categorización en tiempo real.

Una vez realizada, se mostrará en la pantalla la clase identificada y emitirá un sonido con el nombre del contenedor, luego emitirá un corto mensaje educativo.

Diseño de la aplicación propuesta con la interacción del sonido

Al mismo tiempo la App enviará la información por bluetooth al micro controlador, el cual se encargará de abrir la compuerta correcta y emitir la señal para encender los led´s. Abajo se muestra un diagrama simulado en Tinkercad.

Bosquejo del circuito

Su futuro: Próximos pasos

Hasta este punto, tenemos una idea de cómo Conciencia Ecológica de una forma sencilla puede orientar a los niños en la creación de hábitos para Reducir, Reutilizar, Reciclar y Recuperar. Pero…

¿hasta aquí llegamos?

A corto plazo, lo primero sería llevar esta conceptualización a la realidad, mejorando cada uno de los aspectos técnicos contemplados en el prototipo. El financiamiento de la Municipalidad de Guayaquil o una institución interesada seria la chispa para propulsar el proyecto.

A mediano plazo, aumentar la base datos e incluir otros materiales para la clasificación, como por ejemplo metal e incluso escalarse el proyecto a empresas para materiales peligrosos como baterías, bombillos ahorradores, bombillo fluorescentes, que están ocasionando un grave problema al ambiente.

En principio, el diseño de los contenedores educativos esta ajustados a las necesidades de cada región e incluso país, ya que actualmente no existe una regulación internacional que dicte las normas de los colores de los contenedores o qué tipo de material se recicla, se puede adaptar Conciencia Ecológica a las necesidades del usuario.

¿Por qué no buscamos que la inteligencia artificial le responda al niño sus inquietudes y dudas?. La App puede ser mejorada para incluir la interacción con el niño y se podría tener una conversación de reciclaje y de aspectos de interés para la educación de los niños de acuerdo a los programas educativos de cada región o país.

Pensando en el futuro de la información. El sensor ultrasónico, podría generar datos a través de la estimación de volumen de cada contenedor. Estos datos ayudarán a llevar la estadística acumulada en el tiempo, sea por contenedor y en sus 5 categorías; así como también por escuelas.

Esta información se alojará en una base de datos para posteriormente alimentar un dashboard de indicadores que permitirá su monitoreo, así como otras funcionalidades como: el control de dispositivos que no estén en funcionando; las escuelas que no están siendo proactivas; tiempo de contenedores llenos sin gestionar; entre otros. En fin una serie de indicadores primordiales, que permita a través de los entes encargados llevar un control de unidades “contenedores” por escuela e incentivar a estas para que su alumnado aprenda jugando.

Integrantes:

  • Luis Reyes
  • Lady Sangacha
  • Jostin Maldonado
  • Karely Mayorquín
  • Jorge Chiquito
  • Verónica Abad
  • Carlos González

Presentación del proyecto: DemoDay

Repositorio:

GitHub: https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/ConcienciaEcologica

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

0_OQ2gYZrD8JOFzhzB

Deep Learning aplicado a detección temprana de incendios forestales

La Paz. Segunda Edición. 2021

En el mundo, los incendios forestales constituyen la causa más importante de destrucción de bosques. En un incendio forestal no sólo se pierden árboles y matorrales, sino también casas, animales, fuentes de trabajo e inclusive vidas humanas.

Como se puede apreciar en la Fig.1 en Bolivia los últimos siete meses este fenómeno se multiplicó de manera alarmante el área afectada debido a múltiples factores la Fig. 2 muestra algunas de las causas estudiadas para los incendios forestales. Otro factor importante identificado es el cambio climático que debido al aumento de temperatura en los lugares afectados, aumenta las áreas afectadas de manera alarmante.

Fig. 2 Causas identificadas de los incendios forestales (Vélez)

Debido a las consecuencias de los incendios forestales no controlados ni planificados se deben tomar diferentes estrategias que permitan mitigar su ocurrencia en zonas protegidas o prohibidas para esta actividad.

Descripción del problema

En base a lo mencionado anteriormente se plantea el siguiente problema:

¿Cómo identificar de manera oportuna incendios forestales no controlados para minimizar su impacto?

Objetivo general

Se plantea como objetivo general implementar un modelo de Deep Learning para la detección temprana de incendios forestales mediante el reconocimiento de humo en las áreas llanas/boscosas utilizando imágenes del lugar.

El siguiente gráfico muestra la idea central del proyecto.

Fig. 3 Propuesta del proyecto

Recolección de la información

El dataset para realizar el entrenamiento de los modelos se realizó mediante la descarga de imágenes clasificadas como “incendio forestal” (imágenes tomadas en perspectiva con presencia de humo en zonas forestales) y “no incendio forestal” (imágenes tomadas en perspectiva en zonas forestales sin presencia de humo o fuego).

Las imágenes descargadas (4 grupos de imágenes) fueron llevadas a un repositorio github para su importación sencilla en Google Colab.

Impresión de las 8 primeras imágenes de entrenamiento y 8 primeras imágenes de validación:

Selección de los modelos

La selección de los modelos parte de las siguientes consideraciones:

  • Facilidad de su implementación.
  • Rendimiento del modelo.
  • Limitación de cálculo.

Estas consideraciones son debido a los recursos que se tienen para realizar el objetivo general. Los modelos a desarrollarse son:

  • CCN Personalizado
  • VGG-16

Técnicas implementadas

La principal técnica utilizada para compensar el dataset de tamaño limitado por la limitación de búsqueda de imágenes en Google fue la de “data augmentation” realizada por la librería de kerasImageDataGenerator”.

Fig 5. Data Augmentation
Fig. 6 ImageDataGenerator en Keras

Evaluación de modelos

1. CNN personalizado

2. VGG-16

Análisis de resultados

A continuación se muestran los resultados del modelo CNN personalizado y VGG-16.

1. Precisión y Curva de ROC de CNN personalizado:

Curva ROC de CNN personalizado

2. Precisión y Curva de ROC de VGG-16:

Precisión de VGG-16.
Curva de ROC de VGG-16.

Las predicciones de los modelos a continuación:

1. CNN Personalizado

2. VGG-16

Conclusiones

El modelo CNN personalizado tiene un desempeño adecuado para la detección de incendios forestales. El modelo VGG-16 con el elemento de pre-entrenamiento requiere más elaboración para obtener resultados más precisos. De esta manera un modelo Deep Learning no siempre requiere tener una alta complejidad para realizar la clasificación de manera eficiente.

El modelo desarrollado obtiene muy buenos pronósticos para el problema planteado y es una solución complementaria al problema de incendios forestales.

La utilización de modelos de AI Deep Learning pueden ser mejor explotados como complemento a la solución de problemas coyunturales.

Integrantes

Presentación del proyecto: DemoDay

¡Más Inteligencia Artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Inteligencia artificial para la predicción de cosechas

Tendencia de la producción del 1940 al 2020

Máster Online. Primera Edición. 2021

Los rendimientos de los cultivos no están exentos de sufrir los múltiples efectos nocivos de los que es responsable el cambio climático. El clima extremo es más común ahora que hace siglos, razón por la cual, sequías, inundaciones, altas y bajas temperaturas, entre otros, se requiere modelar dicho comportamiento.

La hipótesis inicial del proyecto se centraba en la predicción de cosechas sobre una región dentro de España, después de cerciorarnos de la poca información sobre las cosechas que hay actualmente disponible y la inexistente normalización en el formato de los datos se decidió elegir Illinois como la localización para nuestro proyecto.

Para poner en contexto el proyecto es imprescindible conocer antes varios aspectos sobre el estado de Illinois: Este estado se caracteriza por su terreno poco accidentado en general, y por su clima inestable así como por varias catástrofes climáticas acontecidas en los últimos años. La agricultura es una importante fuente de ingresos de Illinois especialmente en la producción del maíz y la soja.

Se puede observar en el gráfico mostrado que el rendimiento de la producción del maíz se ha visto incrementado a lo largo de los años, al mismo tiempo podemos constatar que han habido bajadas en la producción provocadas por eventos climáticos extremos.

Este contexto tan particular de la tendencia de la producción en Illinois nos ayudó a comprender que realizando un proyecto basándonos en la comprensión y categorización de los datos así como el posterior tratado de los mismos con un modelo de predicción nos daría como resultado la posibilidad de predecir la distribución de la producción en Illinois a futuro y con ello se podría ayudar a todo el territorio a prevenir y contrarrestar los picos de baja producción causados por las catástrofes climáticas u otros factores climáticos.

Pasos del proyecto

Para conseguir la predicción del rendimiento de las cosechas hemos priorizado la limpieza y gestión de los datos más óptima. Las dos series de datos históricos principales con los que hemos trabajado han sido : la temperatura a 2m del suelo y el Índice de vegetación EVI. El siguiente paso para analizar la serie temporal de yield es necesario aislar el componente aleatorio, aplicando la diferenciación regular para obtener una nueva serie, con un dato menos que la original, en la que se ha eliminado la tendencia.

El siguiente paso es el alineamiento de las muestras ya que las muestras de temperatura y de índice de vegetación no se realizaron en el mismo día. Para alinear ambas capturas de información interpolamos la serie de EVI de esta forma generamos un nuevo set de capturas para que ambas series coincidan.

Después de realizar todos estos pasos, indispensables para poder realizar el modelo de predicción, hemos conseguido tener los datos ya limpios para proceder con el mismo. Llegados a este punto hemos explorado varios modelos lineales (LinearRegression, Lasso, Ridge) y el resultado no ha sido el esperado ya que nos hemos encontrado con mucho overfitting. Al final hemos seleccionado un RandomForestRegressor porque consideramos que era el modelo más adecuado para este caso, finalmente para la selección de los hiperparámetros utilizamos el RandomizedSearchCV.

Conclusión

Este proyecto es un punto de partida para el seguimiento, evolución y mejora del rendimiento de producción de cosechas de maíz en Illinois. Nos complace haber encontrado algunas ideas interesantes de los conjuntos de datos proporcionados: una relación entre el rendimiento del cultivo y el tiempo, la temperatura y el valor EVI.

Como resultado del modelo predictivo podemos observar que un error de modelo (varianza) independiente de la magnitud de la producción y que cuanto mayor es la producción menos se nota el error de la predicción del modelo. Según este resultado comprendemos que añadiendo más variables como las precipitaciones, composición del terreno, grado de heladas o catástrofes climáticas podríamos conseguir un porcentaje de error menor.

Como punto de mejora del proyecto podríamos destacar la optimización en el cálculo de interpolación para mejorar la velocidad de procesamiento del código. Es un ejemplo de que con unos datos y variables óptimas se pueden desarrollar modelos de predicción útiles para localizaciones geográficamente equivalentes.

Finalmente, nos gustaría agradecer a Saturdays AI por brindarnos la oportunidad de realizar este proyecto y conocer a otras personas involucradas en el campo de la IA, así como probar nuestras habilidades en ML y ampliar nuestros horizontes en nuevos temas previamente desconocidos para nosotros.

Integrantes

Presentación del proyecto: DemoDay

¡Más Inteligencia Artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!