Detección de fatiga en conductores de vehículos mediante Inteligencia Artificial

La Paz. Deep Learning. 2021

Las herramientas de visión artificial han demostrado vez tras vez el gran potencial que posee en sus distintas áreas de aplicación. Una de estas está justamente relacionada con los vehículos y sus conductores. Abarcando desde movilidades autónomas hasta herramientas de uso personal el espectro es muy amplio. Por ello, en este texto se explica la implementación de un detector de fatiga en conductores mediante Inteligencia Artificial utilizando OpenCV y Dlib.


DESCRIPCIÓN DEL PROBLEMA

Los accidentes de tránsito son una de las principales causas de muerte en ciudadanos de todos los países. Estos se pueden clasificar de acuerdo a sus causas. Se calcula que entre un 20% y un 30% de los accidentes se deben a conductores que conducen con fatiga. Si bien la fatiga al conducir es un riesgo evitable, lastimosamente, muchos conductores no toman las precauciones necesarias cuando conducen por periodos prolongados de tiempo. Por lo tanto, los conductores con fatiga pueden beneficiarse de un sistema de Inteligencia Artificial que los alerte al momento de perder la atención.


OBJETIVO

Diseñar un sistema para detectar la fatiga en conductores.


SELECCIÓN DEL MODELO

Se seleccionó un modelo de visión artificial pre entrenado basado en la librería cv2 de OpenCV y dlib para detección facial.


TÉCNICAS IMPLEMENTADAS

  • OpenCV: La biblioteca libre de visión artificial que se está usando para obtener la imagen del conductor.
  • Dlib face landmarks: Son 68 puntos que se colocan sobre el rostro detectado para la identificación de facciones faciales, en este caso los ojos.
  • NumPy: Esta biblioteca se está usando para el cálculo de la proporción de abertura de los ojos, mediante álgebra lineal y el posicionamiento de los puntos faciales de los ojos.


EVALUACIÓN DE MODELOS

El sistema construido hace uso de un modelo pre entrenado de detección facial. Con ayuda de las bibliotecas previamente mencionadas se realiza un procedimiento como sigue:

  1. Se carga el modelo detector y predictor que son los que detectan el rostro del conductor así como los 68 puntos faciales.
  2. Una función lineal detecta la proporción de aspecto en los ojos midiendo distancias entre los puntos oculares.
  3. Según el valor que se obtenga en esta proporción el programa se ramifica según el estado que considere correspondiente (despierto, cansado o dormido). Para que se considere la transición de un estado a otro debe haber una permanencia en ese estado durante un periodo de tiempo.
  4. El sistema indica en pantalla el estado identificado, este es el paso donde podría activarse o no una alarma.
  5. Este procedimiento se realiza fotograma a fotograma para tener una predicción constante del estado de fatiga de la persona.


ANÁLISIS DE RESULTADOS

Como se utilizó un modelo pre entrenado los resultados obtenidos por el detector facial y de los puntos de referencia del rostro son buenos.

Sin embargo, los resultados que obtuvimos en la detección del estado de fatiga son más bien fluctuantes. En ocasiones el sistema es poco sensible y no detecta estados con los ojos cerrados o, por el contrario, el sistema es pronto para indicar un estado posiblemente falso. Las razones que podrían causar este problema incluyen la calidad del video y el enfoque exclusivo en los ojos del conductor (cuando podrían tomarse en consideración otros factores como la boca).


CONCLUSIÓN

El proyecto ha desarrollado un sistema funcional capaz de detectar la fatiga en conductores de vehículos. La consistencia en estas detecciones no es buena así que se proponen algunas sugerencias: Aplicar operaciones de erosión y dilatación para reducir el ruido en la captura de video, implementar un sistema que detecte la proporción de abertura de la boca para aumentar la consistencia, y modificar los umbrales de detección para ajustarse a las necesidades de cada conductor.


INTEGRANTES

Carlos Claure –https://www.linkedin.com/in/carlos-manuel-claure-vargas-475226212

Raquel Calle –https://www.linkedin.com/in/raquel-veranda-calle-zapata-460226212

Liders Limpias –https://www.linkedin.com/in/limpiaslider/

Alejandro Carrasco. –https://www.linkedin.com/in/miguel-alejandro-carrasco-c%C3%A9spedes-785717215/


REFERENCIAS


Presentación del proyecto: DemoDay

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!Saturdays.AI

Raquel Calle

WRITTEN BY

Raquel Calle

Saturdays.AI

Saturdays.AI

Saturdays.AI is an impact-focused organization on a mission to empower diverse individuals to learn Artificial Intelligence in a collaborative and project-based way, beyond the conventional path of traditional education.

FindPet: Identificación de mascotas perdidas con Inteligencia Artificial

La Paz. Deep Learning. 2021

En este artículo utilizaremos técnicas de Inteligencia Artificial para encontrar mascotas perdidas. Aquellas personas que han perdido a una mascota por diferentes motivos saben que aunque muchas regresan a sus dueños un gran porcentaje no logra el reencuentro. Unas 420,000 mascotas, entre perros y gatos principalmente, se pierden anualmente en el Perú y son muy pocas las que son encontradas o devueltas a sus dueños, debido a que es muy difícil identificarlas.

La identificación de mascotas por lo general se hace a través de plaquitas metálicas colgadas en su cuello, con su nombre y el teléfono del propietario. Otros optan por insertarles un chip bajo la piel y algunos pocos, por lo costoso, prefieren los GPS e, incluso, tatuarlas. Ante la pérdida de sus mascotas, las personas optan por buscarlas mediante carteles pegados en postes, a través de redes sociales, anuncios en medios de comunicación u ofreciendo recompensas en dinero o con entradas a conciertos o partidos de fútbol. Es por ello, que el objetivo de este proyecto es poder ayudar a las personas a encontrar a sus mascotas perdidas mediante Inteligencia Artificial y Deep Learning para la identificación de sus mascotas de manera rápida, precisa y económica.


Problemática

Diariamente, se calcula que se extravían aproximadamente entre 30 y 40 animales domésticos, entre perros y gatos, solamente en Lima. Sin embargo, se estima que esta cifra puede ser mayor, no solo al contabilizar el resto de las ciudades de Perú, sino también porque muchas personas no saben cómo o dónde pueden reportar la pérdida o extravío de su mascota. Muy pocas mascotas son encontradas o retornadas con sus dueños, debido a que es difícil poder identificarlas y hacer el rastreo correcto. Como consecuencia de ello, muchas de las mascotas terminan como animales callejeros causando sobrepoblación que terminan contaminando la ciudad con sus heces y los parásitos que son expulsados a través de estas.


Objetivo

Desarrollar una aplicación que ayude a las personas a reportar y encontrar mascotas perdidas de manera rápida usando Inteligencia Artificial con técnicas de Deep Learning.


Datasets

Se utilizaron datasets existentes y de acceso libre, para la clasificación de razas se utilizaron los datasets de Stanford que contiene imágenes de 120 razas de perros de todo el mundo y Thudogs que contiene 130 razas de perros junto con los bounding boxes de todo el cuerpo y la cabeza del perro en cada imagen; mientras que para la identificación de mascotas se utilizó Flickr que contiene sólo los rostros del perro y está dividido por nombre del perro perteneciendo solo a dos tipos de raza: pugs y huskies.


Proceso de Identificación de Mascotas

El proceso de identificación de mascotas perdidas mediante Inteligencia Artificial consta de cuatro fases como se muestra en la siguiente figura, a continuación se detalla cada una de ellas.

  • FASE GRUESA: Clasificación de Razas

En esta fase, ingresa la imagen de un perro perdido o encontrado y se evalúa con el modelo de clasificación de razas y como output se obtiene el top N de razas a la que pertenece el perro, esto sirve como input para la fase media donde solo ingresarán las imágenes que se tenga en base de perros encontrados o perdidos que se tenga de estas “N” razas.

  • FASE MEDIA: Detección de Rostro

En esta fase, se tiene como input la imagen del perro encontrado y el resultado de la clasificación de esta imagen obteniendo las imágenes de top N de las razas, para ser evaluados por el modelo de detección de rostros, en este caso yolo v5, obteniendo como output los bounding boxes del rostro del perro para cada imagen.

  • FASE FINA: Identificación de la mascota

En esta fase, ingresa como input las imágenes del perro encontrado o perdido junto con las imágenes del top N ya recortadas el rostro utilizando los bounding boxes obtenidos de la fase media, para hacer el entrenamiento del modelo de identificación de rostro.

  • DECISIÓN SUPERVISADA

Finalmente, para hacer una decisión más precisa utilizamos decisión supervisada con parámetros como la edad y el género del perro, para poder acotar y tener más precisión para identificar al perro correcto.


Modelos

Para la construcción del modelo de clasificación de razas e identificación de mascotas se utilizó Redes Neuronales Convolucionales, específicamene Inception v3 y Xception, ya que que se trata de un problema de clasificación de imágenes con N posibles salidas, donde N es el número de razas o número de nombres de perros, en el caso del dataset de Stanford N tiene un valor de 120 , para Thudogs 130 y Flickr 42. Para la construcción del modelo de detección de rostro de la mascota se usó Yolo v5.

  • Inception v3

Inception-v3 es una arquitectura de red neuronal convolucional de la familia Inception que realiza varias mejoras, incluido el uso de Label Smoothing, convoluciones factorizadas 7 x 7 y el uso de un clasificador auxiliar para propagar información de etiquetas en la parte inferior de la red, junto con el uso de batch normalización para capas en la cabecera lateral.

A continuación, se muestra el diagrama de arquitectura de Inception v3:


  • Xception

Xception significa “xtreme inception”. Esta arquitectura replantea la forma en que vemos las redes neuronales, en particular las redes convolucionales. Y, como sugiere el nombre, lleva los principios de Inception al extremo.

En una red convolucional tradicional, las capas convolucionales buscan correlaciones tanto en el espacio como en la profundidad. En Inception, comenzamos a separar los dos ligeramente. Usamos convoluciones 1×1 para proyectar la entrada original en varios espacios de entrada más pequeños y separados, y de cada uno de esos espacios de entrada usamos un tipo diferente de filtro para transformar esos bloques de datos 3D más pequeños. Xception lleva esto un paso más allá. En lugar de dividir los datos de entrada en varios fragmentos comprimidos, asigna las correlaciones espaciales para cada canal de salida por separado y luego realiza una convolución en profundidad 1×1 para capturar la correlación entre canales.

A continuación, se presenta el diagrama de arquitectura de Xception, donde los datos pasan primero por el flujo de entrada, luego por el flujo medio que se repite ocho veces y finalmente por el flujo de salida. Tenga en cuenta que todas las capas de convolución y convolución separable van seguidas de la normalización por lotes.


  • Yolo v5

Yolo v5 es un modelo de detección de objetos, y su primera versión oficial fue lanzada por Ultralytics. Como YOLO v5 es un detector de objetos de una sola etapa, tiene tres partes importantes como cualquier otro detector de objetos de una sola etapa.

  • Model Backbone: se utiliza principalmente para extraer características importantes de la imagen de entrada dada. En YOLO v5, las CSP — Cross Stage Partial Networks se utilizan como backbone para extraer una gran cantidad de características informativas de una imagen de entrada.
  • Model Neck: se utiliza principalmente para generar pirámides de características. Las pirámides de características ayudan a los modelos a generalizarse bien en la escala de objetos. Ayuda a identificar el mismo objeto con diferentes tamaños y escalas. Las pirámides de características son muy útiles y ayudan a los modelos a funcionar bien con datos invisibles. Hay otros modelos que utilizan diferentes tipos de técnicas de pirámide de características como FPN, BiFPN, PANet, etc.
  • Model Head: se utiliza principalmente para realizar la parte de detección final. Aplicó anchor boxes en features y genera vectores de salida finales con probabilidades de clase, objectness scores, y bounding boxes.

A continuación se muestra el diagrama de arquitectura de Yolo v5:


Resultados

  • FASE GRUESA: Clasificación de Razas
  • FASE MEDIA: Detección de Rostro
  • FASE FINA: Identificación de la mascota


Conclusiones y Recomendaciones

  • En la fase gruesa de clasificación de razas, se concluye que el modelo más óptimo es Inception v3 con un accuracy de 83.35% usando el dataset de Stanford y 78.28% para el de Thudogs.
  • En la fase media de detección de rostros, se probó únicamente el modelo Yolo v5 obteniendo un MAP de 98.5%.
  • En la fase fina de identificación de rostros, se concluye que el modelo más óptimo es Xception con un accuracy de 67.5% para el dataset de Flickr una vez realizado el data augmentation.
  • El uso de modelos de deep learning en la identificación de mascotas perdidas disminuirá el tiempo de retorno de la mascota a su hogar, permitiendo hacer el rastreo correcto.
  • En la fase fina se recomienda probar GAN’s para data augmentation.
  • En la fase gruesa, se sugiere combinar los datasets de Stanford y Thudogs, y probar los modelos desarrollados.
  • En la fase gruesa, se recomienda crear un dataset propio para identificación.
  • En la fase media, se sugiere probar nuevos modelos adicionales a yolo v5.


Referencias

  • Dog Identification using Biometrics and Neural Networks

https://arxiv.org/pdf/2007.11986v1.pdf

  • Dog Breed Identification Using Deep Learning

https://www.researchgate.net/publication/328834665_Dog_Breed_Identification_Using_Deep_Learning

  • Yolo v5

Train Custom Data · ultralytics/yolov5 Wiki? This guide explains how to train your own custom dataset with YOLOv5 ?. UPDATED 25 July 2021. Clone this repo…github.com

Presentación del proyecto: DemoDay


¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!Saturdays.AI

WRITTEN BY

Mishel Carrion Lopez

Saturdays.AI

Saturdays.AI

Saturdays.AI is an impact-focused organization on a mission to empower diverse individuals to learn Artificial Intelligence in a collaborative and project-based way, beyond the conventional path of traditional education.

Predicción de fallas futuras en motores de turboventiladores con Machine Learning

La Paz. 2021

Aplicamos Machine Learning (un tipo de red neuronal recurrente (RNN) llamado LSTM (Long short-term memory)) para realizar una predicción de fallas en motores y ayudar así a reducir uno de los mayores problemas a nivel industrial, como es el mantenimiento correctivo (debido a sus elevados costes tanto de reparación como de producción). Por otra parte el mantenimiento preventivo está planificado por medio de una agenda para realizar un paro programado, donde no interesa si el equipo aún puede trabajar o si sus piezas siguen bien; se realiza el mantenimiento porque así fue programado.

Es por ello que, con el pasar de los años la tecnología permite que podamos invertir en nuevas soluciones que nos permita saber cuándo fallará un equipo, esto es llamado mantenimiento predictivo (PdM). Que actualmente, por medio de diferentes sensores podemos tener un dataset completo de muchas variables, como ser: vibración, temperatura, análisis de aceites o grasas, etc.

Fig. 1. Diferencia de ganancia por producción entre el mantenimiento preventivo tradicional y el mantenimiento predictivo, donde solamente se detiene la producción basado en condiciones.


DESCRIPCIÓN DEL PROBLEMA

El problema es el tiempo y los recursos económicos invertidos para poder solventar una falla de mantenimiento correctivo en el menor tiempo posible. A la vez que un mantenimiento preventivo podría optimizarse al hacerlo en base a condiciones de los equipos. Ambos ocupan tiempo en su mantenimiento y también en la producción del producto.


DATASET

Los datasets utilizados, son de la degradación de motores de turbo-ventiladores de la NASA generados por C-MAPSS, lo cual es aplicable a cualquier otra máquina rotativa, como ser: motores de transportes industriales, bombas hidraulicas, etc.

Fig. 2. Imagen del turboventilador simulado por C-MAPSS.
Tabla 1. Detalle de las columnas de los datasets de prueba y entrenamiento.


SOLUCIÓN PROPUESTA

Por tal motivo el proyecto ayudará a estimar el tiempo en el cual unos turboventiladores llegarán a fallar. Dando el tiempo suficiente para poder programar una parada de mantenimiento y buscar los repuestos necesarios al mejor precio.


SELECCIÓN DEL MODELO

Para la detección de fallas en motores veremos los siguientes modelos de Machine Learning:


RNN

Son un tipo de red neuronal recurrente (RNN) y estas tienen conexiones recurrentes entre estados ocultos, con un retraso de tiempo. Idealmente, las RNN son capaces de descubrir correlaciones temporales entre los eventos secuenciales que están muy lejos unos de otros

Fig. 3. Arquitectura de una Red neuronal recurrente (RNN)
Fig. 4. Arquitectura de una Long Short-Term Memory (LSTM)


LSTM

Sin embargo, en la práctica, es difícil entrenar RNN debido al Vanishing Gradient y los problemas de Exploding Gradient. Por lo que las RNN se enfrentan a dificultades para manejar dependencias en secuencias de largo plazo. Por lo que, el modelo basado en RNN más efectivo se llama LSTM. De manera resumida, su estructura consiste en celdas de memoria. La cual su principal función es la de almacenar un valor y determinar el tiempo que debe almacenarse. Además, estas celdas seleccionan qué entradas se almacenan y también deciden si estas serán recordadas, eliminadas o si serán enviadas como salida de una red.

Fig. 5. Programación de la RNN con LSTM

La red tiene dos capas de LSTM, la primera de 100 unidades y la segunda de 50 unidades. A la salida de cada una se tiene un DropOut para evitar el overfitting, y finalmente se tiene la Dense, que es activada por una sigmoid, que nos da la probabilidad final.


PCA

El análisis de componentes principales (PCA) es uno de los algoritmos de machine learning no supervisados más utilizados. Para la reducción de dimensiones y el pre procesamiento de datos.

Fig. 6. PCA aplicado a tres dimensiones para poder graficarlo.
Fig. 7. Datos del dataset completo, con los 21 sensores, y las 3 configuraciones de los usuarios.
Fig. 7. Datos del dataset con PCA aplicado. Se reducen a 8 componentes principales.


MÉTRICAS

A continuación se observarán las métricas analizadas. Donde podemos observar que el accuracy es del 95.11%, y que las F1-Score son muy buenas, la que menor valor tiene es la macro. Además que comparando los datos predecidos con los de prueba, tenemos un accuracy del 97%.

Fig. 8. Métricas calculadas: Accuracy Score, F1-Score Macro, F1-Score Micro, F1-Score Weighted.


ANÁLISIS DE RESULTADOS

Los resultados que analizamos son la matriz de confusión, que nos muestra que su accuracy es del 92.77%, y por otra parte la ROC Curve, donde podemos observar un buen umbral de discriminación del modelo.

Fig. 9. Matriz de Confusión
Fig. 10. ROC CURVE


RESULTADO

Por ende, podemos predecir la probabilidad con la que llegaría a fallar el motor del turbo ventilador en 30 días. Escogiendo el ID de la máquina, tendríamos el siguiente resultado; donde podemos ver que la probabilidad en la que el Motor 16 falle, es del 1.8%, por lo que podemos seguir usando este motor de manera tranquila.

Lo ideal es que este análisis se lo haga de manera periódica, al ser implementado. Debido a que da un buen sondeo del estado de las máquinas a los supervisores de mantenimiento para ir planificando lo más crítico en la siguiente parada.

Fig. 11. Pantalla final, donde el programa nos dice la probabilidad que tiene el motor seleccionado de fallar dentro de 30 días.


CONCLUSIÓN

Por medio de esta aplicación de Machine Learning podemos determinar el tiempo de fallas en motores rotativos, gracias al análisis de datos de dicho equipo. Por ende, se tiene el tiempo suficiente para comprar repuestos y planificar un mantenimiento programado, mitigando los costes de mantenimiento de la empresa.

La precisión del modelo implementado es del 95%, por lo que llega a ser fiable a la hora de analizar las máquinas. Este programa puede ser implementado en multiples plantas industriales, y por medio de Internet Of Things, podemos ir recabando información de todos los sensores necesarios, los cuales serán registrados en la nube para su posterior análisis.

Implementando este tipo de tecnología también llega a repercutir en el area medio ambiental, ya que se cambiarían menos repuestos industrial o maximizar el uso de aceites o grasas de acuerdo a su degradación; se traduce en menos basura industrial para el medio ambiente.


CÓDIGO

https://github.com/albmarale/SaturdaysAIMachineLearning/blob/main/detecci-n-de-fallas-futuras-en-motores-de-turboven.ipynb


BIBLIOGRAFÍA

[1] D. Bruneo and F. De Vita, “On the use of LSTM networks for predictive maintenance in smart industries,” in Proceedings — 2019 IEEE International Conference on Smart Computing, SMARTCOMP 2019, 2019, pp. 241–248, doi: 10.1109/SMARTCOMP.2019.00059.

[2] S. Guldamlasioglu, O. Aydin, and D. Scientist, “Using LSTM networks to predict engine condition on large scale data processing framework,” 2017, doi: 10.1109/ICEEE2.2017.7935834.

[3] L. Swanson, “Linking maintenance strategies to performance,” Int. J. Prod. Econ., vol. 70, no. 3, pp. 237–244, Apr. 2001, doi: 10.1016/S0925–5273(00)00067–0

[4] A. Martínez, “Redes Neuronales Recurrentes con LSTM aplicado al Mantenimiento Predictivo, Caso: Degradación de motores de turboventiladores”, 2020, Universidad Católica Boliviana “San Pablo”.

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esta aplicación:https://github.com/SaturdaysAI/Projects/tree/master/Lapaz/detecci-n-de-fallas-futuras-en-motores-de-turboven-main


¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Diagnósticos de X-Rays con Neumonía en Niños entre 0 a 5 años con Machine Learning

La Paz. Machine Learning. 2021

(La Paz 2021) Alrededor de todo el mundo, existe un problema bastante común en la mayoría de los hospitales y es que al existir diariamente, una cantidad bastante grande de personas que buscan atención médica, el sistema de atención tiende a colapsar y una gran cantidad de personas no llegan a recibir atención médica que puede llegar a ser urgente. Tenemos que tener en cuenta que la variedad de pacientes y la variedad de casos a tratar dentro de un hospital es enorme. Sin embargo, una de las enfermedades más importantes que hay que tratar de forma rápida tras su diagnóstico es la neumonía en niños de 0 a 5 años de edad. En el presente, el Machine Learning nos permite hacer un diagnóstico de neumonía automático y rápido.

La neumonía infantil es la enfermedad infecciosa que más muertes de niños ocasiona día a día en todo el mundo. En promedio, más de 800 000 niños menores de 5 años mueren de neumonía cada año, es decir que cada 39 segundos muere un niño a causa de la neumonía. Lo más impactante en esta situación es que según el artículo realizado por la UNICEF el 20 de enero de 2020, casi todas esas muertes son prevenibles. El número abismal de muertes infantiles a causa de la neumonía es debido a que esta enfermedad se puede transmitir a la hora de respirar partículas suspendidas en el aire.


Problemática:

Teniendo en cuenta la cantidad enorme de casos de neumonía en niños menores de 5 años, ¿cómo podemos implementar una Inteligencia Artificial para que el diagnóstico de la neumonía infantil sea más eficiente?


Objetivo:

El objetivo principal de este proyecto es desarrollar una Inteligencia Artificial capaz de analizar radiografías de infantes que tengan 3 años de edad o menos. De esta forma, todo infante que tenga radiografías de sus pulmones podrá ser diagnosticado en cuestión de segundos y podrá ser llevado a un área de atención en lugar de tener que pasar primero por un doctor general que deba hacer el diagnóstico si el infante tiene o no neumonía.


Datasets:

Se utilizó el dataset “Chest X-Ray Images (Pneumonia)” encontrado en la plataforma de Kaggle. Este dataset contiene 5 863 imágenes divididas en 2 categorías: train (89.4% del dataset total), test (10.6% del dataset total). Estas dos categorías serán utilizadas respectivamente para entrenar y testear nuestro modelo. Así mismo, es importante mencionar que cada categoría del dataset está dividida en dos partes, la primera está compuesta de radiografías de infantes sin pneumonia, esta división está denominada como: “NORMAL”

La segunda parte está denominada como: “PNEUMONIA” y es donde se encuentran las radiografías de los infantes que tienen neumonía:


Proceso de identificación de la neumonía:

Para poder realizar una buena identificación de neumonía hemos decidido utilizar el filtro un filtro de escala de grises que se encuentra en la librería de cv2. Este filtro nos permite resaltar las diferentes áreas importantes del cuerpo humano. De esta forma el análisis es más certero y el accuracy del modelo más alto. Así mismo es importante tener en cuenta que si no pasaramos las imágenes por un filtro sería peligroso ya que el modelo se basaría únicamente en la imágen original y no existiría ninguna opción para eliminar el ruido de la imágen.

En la imágen previa se puede apreciar como los pulmones se ven más resaltados aplicando el filtro ya mencionado.

Subsecuentemente se realizó una normalización a todos los píxeles de cada imagen para que todo valor vaya de 0 a 1.

Así mismo, hemos utilizado la librería de Keras para incluir DataAugmentation dentro de nuestro DataSet. Esta añadidura le permite a nuestro modelo aumentar levemente el accuracy ya obtenido con el filtro de la escala de grises ya que realiza rotaciones, zoom y mueve la imagen de forma horizontal y vertical.

Una vez añadido el filtro se analiza cada imágen y se busca una opacidad homogénea presente al nivel de los pulmones, este es el principal efecto de la neumonía.


Modelos:

El modelo que hemos implementado es el CNN (Convolutional Neural Network). En resumen es un tipo de Red neuronal artificial con un aprendizaje supervisado el cual puede identificar distintas características de entrada, por así decirlo, que en algunos casos no se puede intuir.

Las convoluciones consisten en tomar toda la imagen en pixeles y aplicar cada cierto número de píxeles un kernel (una matriz pequeña) el cual altera la imagen original dependiendo el kernel que estamos aplicando.


Resultados

  • Training & Validation Accuracy + Testing Accuracy & Loss
  • Matriz de confusión

Se intentó una implementación de la métrica de la matriz de confusion pero por un problema de versiones no se pudo obtener los datos buscados

  • Accuracy:
  • User tests:

Teniendo en cuenta que si la predicción se acerca a 1 significa que la imagen es la de pulmones sanos y si se acerca a 0 significa que la imagen corresponde a pulmones con síntomas de neumonía, las predicciones realizadas por nuestro modelo son correctas.


Conclusiones y Recomendaciones

En conclusión se pudo ver que:

  • Se recomienda utilizar los filtros grises para mejorar la calidad de las imágenes
  • Para que no sobrecargue la máquina virtual, si es que se la programa en colab, es necesario cambiar el tamaño de la imagen para que pueda leer todas las imágenes del dataset.
  • En el Data Augmentation implementado se recomienda que se aplique para mejorar el accuracy.
  • Se recomienda implementar la normalización para que la predicción sea más precisa.


Referencias:

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

http://acodigo.blogspot.com/2013/05/procesamiento-de-imagenes-en-opencv.htmlHow to Configure Image Data Augmentation in Keras – Machine Learning MasteryImage data augmentation is a technique that can be used to artificially expand the size of a training dataset by…machinelearningmastery.com

SyDoJa

Neumonía

“Diagnósticos de X-Rays con Neumonía en Niños entre 0 a 5 años con Machine Learning”

INTEGRANTES:

Dylan Chambi Frontanilla

Joseph Anthony Meneses Salguero

Samuel Matias Escobar Bejarano

CURSO:

Machine Learning

LA PAZ 10/09 — BOLIVIA-2021


¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

MOODY.AI

Guadalajara. Tercera Edición. 2021

Nuesta experiencia Saturday.AI

Logo del equipo

Integrantes:

Introducción

Problemática

Dataset

Modelo

moodyNet: red convolucional tipo VGG-16

Resultados

Función de perdida y de precisión a través de las épocas

Conclusiones

Proyección a futuro

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esta aplicación: https://github.com/SaturdaysAI/Projects/tree/master/Guadalajara/March2021/EmotionsDetector-main

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos para el bien (#ai4good). Los talleres que realizamos forman parte del programa AI 4 Schools para que cualquier persona “aprenda haciendo” IA sin importar su especialidad o nivel de partida.

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en este link o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

WRITTEN BY

WRITTEN BY
WRITTEN BY