Tómatelo a pecho: Detección de tumores malignos de cáncer de mama con Inteligencia Artificial

La Paz. Machine Learning. Segunda edición. 2020

Introducción

El cáncer de mama es la primera causa de muerte por tumores malignos en las mujeres a nivel mundial. Al menos en el año 2019 murieron cerca de 688 mil debido este padecimiento, lo cual nos da una tasa de mortalidad para mujeres mayores de 20 años de 24.7 por cada 100 mil.

Motivación

Existe una brecha de mortalidad por cáncer de mama entre países por nivel de ingresos, el 70%(483,000) de los fallecimientos ocurren en los países de ingresos medios y bajos. ¿A qué se deberá?, sucede que en los países de ingresos medios y bajos, hay una falta de acceso a servicios de diagnóstico y tratamiento de esta enfermedad.

Tasa de mortalidad e incidencia

  1. Norteamérica 22%
  2. Latinoamérica y el Caribe 38%
  3. África Sub-Sahariana 65%

Entre el 50 y 63% de las muertes por cáncer de mama en todo el mundo son prevenibles con detección temprana y tratamiento adecuado. Entre el 66 y 74% de estas muertes que son prevenibles ocurren en países en desarrollo. Asimismo, el cáncer de mama, detectado a tiempo y con tratamiento adecuado puede curarse. Y en caso de que no, puede elevar la calidad de vida de las pacientes al menos hasta 5 años (en Norteamérica).

De esta problemática surge nuestro proyecto social. Sabemos que la situación es muy desfavorable para las mujeres, así que podemos contribuir a generar un modelo de machine learning que pueda ayudar a la predicción de este tipo de tumores con el cual, en un futuro muchas mujeres podrían acceder a un método de detección barato y digno, aumentando así su calidad de vida al enfrentarse con esta enfermedad genética.

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783980284/5/ch05lvl1sec30/using-decision-trees-
Detección de cáncer de mama usando el dataset de Diagnosis Wisconsin

Objetivo

Explorar distintos algoritmos de ML (Machine Learning, por sus siglas en inglés) supervisados y no supervisados utilizando el dataset de Wisconsin sobre diagnóstico (explicado más adelante), para compararlos y verificar cual es el que nos proporciona el mejor modelo de detección de cáncer de mama, así como revisar que variables proporcionan mayor información sobre la detección.

Como objetivo sería plantear una generalización de base de datos que pudiera implementarse en cualquier país al que se lleve este diagnóstico.

Proyecto

Se trabajó en una comparativa de ciertos modelos supervisados y no supervisados para determinar la precisión de cada uno y posteriormente utilizarlo para la predicción.

Dataset

Los datos que vamos a utilizar para este primer ejercicio son los proporcionados en el dataset de diagnóstico de Wisconsin que contiene variables sobre la forma del tumor (en términos de núcleo de las células) y su dianóstico, como se muestra a continuación:

  1. id: etiqueta por observación.
  2. diagnóstico: variable binaria que clasifica el tumor. (M=maligno, B=benigno)
  3. radio: media de las distancias del centro al perímetro.
  4. textura: desviación estándar de los valores gradiente de las imágenes.
  5. perímetro: medida del contorno del núcleo celular.
  6. área: medida del área del núcleo celular.
  7. suavidad: variación local de las longitudes del radio
  8. compacidad: medida calculada por ((perímetro²/area) -1)
  9. concavidad: severidad de las porciones cóncavas del contorno
  10. puntos de concavidad: número de las porciones cóncavas del contorno
  11. simetría: similitud entre partes con respecto a ejes.
  12. dimensión fractal: índice comparativo sobre el detalle de un patrón observado de células.

De las variables 3–12 asociamos las métricas: media, error estándar, error extremo.

Descripción del dataset con sus métricas

Análisis exploratorio

Después de haber revisado las variables del dataset procedemos a evaular la distribución del feature diagnostico para saber el balanceo de los datos, esto tiene una repercusión a la hora de entrenar a los modelos, porque como podemos ver en la gráfica siguiente tiene una mayor cantidad de datos asociada a diagnóstico de tumores benignos.

Variable diagnóstico

Posteriormente procederemos a ver los mapas de correlaciones entre variables para identificar si hay que hacer algún preprocesamiento antes de entrenar los modelos.

Mapa de correlaciones con las métricas

Las gráficas anteriores ilustran que en general los tres mapas muestran correlaciones similares, los promedios muestran una correlación más intensa que los valores extremos y a su vez, los valores extremos muestran una correlación más clara que el error estándar, sin embargo en los tres mapas se mantiene la tendencia entre variables.

Destacaremos las correlaciones más evidentes:

  1. radio con perimetro/área/puntos de concavidad: se debe a la forma de calcular estas variables dependen directamente del radio.
  2. perímetro con área/ concavidad/puntos de concavidad: estas correlaciones tienen que ver con lo mencionado en el 1.
  3. suavidad con compacidad
  4. compacidad con concavidad/puntos de concavidad/simetria

Después se realizaron los mapas de correlaciones más específicos que incluyen las tres métricas de las variables con relaciones más destacadas mencionadas anteriormente.

Mapas de correlaciones con las tres métricas

La siguiente gráfica tiene una particularidad, se observa que para las métricas del área los extremos están altamente correlacionados con la media. Y el error estándar es la métrica menos correlacionada con respecto a las otras dos.

Mapa de correlaciones del área

Por último mostraremos las distribuciones y diagramas de dispersión para la media por el tipo de diagnostico, lo cual nos da un indicador de como se comportan las densidades que se puede englobar en los siguientes grupos:

  1. Existe una separación casi total entre densidades: no comparten ni forma ni soporte.
  2. Existe una separación regular entre densidades: comparten forma o soporte.
  3. Existe una separación mínima entre densidades: comparten forma y soporte excepto ligeras variaciones.
Distribuciones sobre la media utilizando la variable diagnostico

Algoritmos no supervisados

PCA

Proponemos este análisis debido a que la estructura de nuestra base de datos tiene una dimensión alta (30 variables) por lo tanto esta técnica de análisis no supervisado nos ayudará a reducir la cantidad de componentes (variables) de nuestra base de datos, proyectando las variables originales a un subconjunto de las mismas.

El conjunto final de las variables escenciales después de este análisis, eliminará las que estén posiblemente correlacionadas. Tenemos ahora una aproximación apriori que terminará de definirse con este análisis, dado que queremos formar dos clusters por la forma binaria que tiene nuestra variable objetivo diagnostico.

La siguiente tabla muestra el porcentaje de varianza que acumula cada una de las componentes principales, consideramos en principio 10 componentes principales, como se observa en la tabla la primera y segunda componente explican el 44.27% y el 18.97% de la varianza respectivamente, lo que implica que las primeras dos componentes explican el 63.24% de la varianza.

PCA con n_components = 10

Así que repetiremos el procedimiento pero para ahora solo sacar 2 componentes, ya que obtienen más del 60% de la varianza total.

Distribución de 2 clústers para la variable diagnostico

Ahora vamos a intentarlo con n=3 y podremos observar el mismo comportamiento que con dos dimensiones. En conclusión hay un agrupamiento claro con respecto al tipo de diagnóstico, incluso podría separarse linealmente (con una recta en el caso bidimensional y con un plano en el caso tridimensional) salvo algunas observaciones que se diseminan por completo.

PCA n_componentes = 3

K-Means

Para este algoritmo de ML, utilizamos el dataset sin reducción, y entrenamos el modelo para que realizara una maximización de la separación de los clústers dadas las características que tenemos (28 variables, removiendo el label).

Para este caso una visualización tipo silueta puede ayudar mucho a explicar los resultados. El Silhouetter Score fue de 0.697 es decir, que tan bien separados están los clústers, recordando que 0 quiere decir que hay overlapping y 1 que están perfectamente delimitados.

Visualización de Silueta para los 2 clústers principales de la variable diagnostico

Para probar este modelo decidimos generar datos random con las variables seleccionadas del dataframe y estos fueron los resultados:

El modelo es capaz de clasificar si están en 1 (Benigno) y 0 (Maligno) dependiendo de los valores entrantes que fueron generados de manera random. Esto posteriormente con datos reales, podría detectar tumores de mama hasta con una probabilidad de 69%, lo cual es poco deseable. Más adelante con los algoritmos supervisados podremos elevar este porcentaje.

Algoritmos Supervisados

Regresión Logística

Nuestro proyecto entra en la categoría de clasificación binaria, debido a que tenemos una variable diagnostico que solo nos muestra si es benigno o maligno. Por tanto, este modelo nos beneficia al darnos una primera aproximación para la resolución del problema. En primera instancia, aplicamos el algoritmo de regresión logística para los datos en sus 30 dimensiones y para ver claramente como está funcionando este clasificador, emplearemos una matriz de confusión como se muestra a continuación.

Matriz de confusión sobre falsos positivos, falsos negativos, verdaderos negativos y verdaderos positivos

Dada la predicción anterior podemos incluir la precisión del modelo calculada con la métrica de sklearn accuracy_score fue de 0.962765. Resultado que es mucho mejor que nuestro anterior modelo no supervisado (KMeans).

Un diagnóstico más específico es la probabilidad de predicción por observación, es decir, qué tan probable es que esa observación sea clasificada como Benigno o Maligno. Así que vamos a ver su desempeño por cross-validation. Cross-Validation Accuracy Scores [0.94871795 0.92105263 0.94736842 0.92105263 0.97368421 0.97368421 0.97368421 0.94736842 0.92105263 0.94736842].

Por lo anterior concluimos que en promedio tenemos una precisión del 94.6%, sin embargo es necesario revisar la estructura del modelo y los supuestos del mismo.

Regresión Logística paso por paso

Después de la pasada primera aproximación del modelo es momento de revisar si se cumplen ciertos supuestos requeridos para el desarrollo de la regresión logística, algunos de estos supuestos los enunciaremos a continuación.

  1. La variable objetivo debe ser binaria. En nuestro caso diagnostico es ‘M’ o ‘B’.
  2. El resultado de la variable de interés asociado al “éxito” debe ser 1.
  3. Solo deben incluirse las variables significativas.
  4. Las variables deben ser independientes entre sí, para evitar el problema de multicolinealidad.
  5. Debe haber un tamaño de muestra “suficiente”

Procederemos a la construcción de la regresión lineal cuidando estos supuestos.

En un principio detectamos que nuestra muestra no estaba balanceada en cantidad de observaciones malignas (~37%) y benignas (~62%), para lo cual se utilizó la biblioteca SMOTE debido a que realiza una generación aleatoria de las observaciones faltantes basada en KNN.

Balancenado las observaciones para tener la misma cantidad de observaciones B y M

Nota: Solo sobremuestreamos en el conjunto de datos de entrenamiento, puesto que la información que hay en los datos de prueba no será incorporada en el modelo de entrenamiento.

Para “Solo deben incluirse las variables significativas”, es necesario identificar las variables que tengan el mejor rendimiento, así poder incluir finalmente variables o características más pequeñas y más representativas. Estas fueron las variables elegidas:

“radio_medio”,”textura_medio”,”perimetro_medio”,”area_media”,”suavidad_media”,”compacidad_media”,”concavidad_media”,”puntos_concavidad_media”,”simetria_media”,”dim_fractal_media”,”radio_ee”,”textura_ee”,”perimetro_ee”,”area_ee”,”suavidad_ee”,”compacidad_ee”,”concavidad_ee”,”puntos_concavidad_ee”,”simetria_ee”,”dim_fractal_ee”,”radio_extremo”,”textura_extremo”,”perimetro_extremo”,”area_extremo”,”suavidad_extremo”,”compacidad_extremo”,”concavidad_extremo”,”puntos_concavidad_extremo”,”simetria_extremo”,”dim_fractal_extremo”

Ahora implementaremos el modelo con las nuevas variables seleccionadas y los datos balanceados:

Verificando manualmente el valor p de cada una de las variables, quitamos aquellas tales que el valor p exceda .05 que es nuestro nivel de confianza. Ahora vamos a revisar el supuesto de independencia revisaremos nuevamente las correlaciones con las variables finales de nuestro modelo.

Correlaciones para las variables finales

El mapa de correlaciones anterior sugiere una alta correlación para radio_medio y perimetro_extremo por lo que quitaremos una de las dos basándonos en la calificación obtenida en el desempeño del modelo.

Logit sobre el modelo y ver la mejor calificación de radio_medio vs perimetro_extremo

Ahora las variables seleccionadas muestran una correlación en general baja, lo que aporta a la hipótesis de independencia. Ahora calificaremos nuevamente el desempeño de nuestro modelo. Primero obtendremos la nueva matriz de confusión y posteriormente la precisión.

Ya no hay variables dependientes o con altas correlaciones

Ahora nuestra precisión es de 0.918. Así se ve la matriz de confusión:

Matriz de confusión

Por último, vamos a comprobar con un ROC Curve que es una herramienta usada en modelos de clasificación binarios, la forma de interpretar esta gráfica es que un clasificador preciso debe estar lo más lejos de la línea identidad (excepto en los extremos).

ROC Curve para verificar la precisión del modelo

Después de este procesamiento, podemos concluir que tenemos una precisión del 92% en promedio la cual es inferior a la propuesta en el primer modelo de regresión logística, la ventaja de este último modelo es la reducción de dimensión de 30 variables a 6 además de que se apega más a los supuestos del modelo de Regresión Logística, esto puede tener implicaciones en cuanto a generalización (que funcione en otras bases de datos) y costo computacional (menos tiempo de procesamiento).

SVM

Este algoritmo tiene como objetivo clasificar con base en distancias a hiperplanos diferentes clases de observaciones, es preferido por su nivel de precisión y su bajo costo computacional. Además otra ventaja de este algoritmo es que funciona bien para grandes dimensiones, es decir para gran cantidad de variables explicativas.

Después de esta implementación obtuvimos una precisión del 92.98% sin embargo, hay ciertas observaciones que es importante resaltar sobre este algoritmo.

  • Este algoritmo no es muy preciso cuando no hay una clara separación entre las clases de variables, en nuestro caso puede observarse en la visualización de PCA que existen observaciones que están mezcladas entre clases.
  • Este algoritmo optimiza distancias, es decir que no existe un fundamento estadístico para la clasificación, no considera la distribución de los datos.

KNN

Implementaremos ahora el algoritmo de KNN que es un algoritmo no paramétrico usado con frecuencia como modelo de clasificación o regresión.

Primero graficaremos el número de clústers que maximiza la función.

La maximización de clústers

Obtuvimos una precisión del 96.27% que es mayor a las precisiones obtenidas en los modelos anteriores, sin embargo hay que hacer ciertas observaciones sobre este modelo:

  • Este modelo no tiene un buen desempeño cuando hay gran cantidad de variables. Esto implica que para un nivel de precisión fijo, conforme crece el número de variables explicativas la cantidad de observaciones debe crecer de manera exponencial.
  • Tiene poco poder de generalización, es decir, tiene problemas de sobreajuste.
  • Los puntos anteriores implican que existe un gran costo computacional correr este algoritmo.

And last but not least…

Random Forest

Como esperábamos este modelo tiene una precisión del 97.36% que es la más alta con respecto a los demás modelos, algunos comentarios sobre este modelo son:

  • Este modelo es fundamentalmente predictivo, no explicativo, no tiene un sentido claro del procesamiento de información.
  • Para problemas complejos el costo computacional puede crecer demasiado.

Conclusiones

Después de probar los modelos anteriores notamos que cada una de las implementaciones tienen ventajas y desventajas, además existen modelos que se complementan entre sí como observamos en el caso de PCA, regresión logística y SVM, en donde un modelo de aprendizaje no supervisado puede trazar las posibilidades de clasificación y reducción de dimensiones, posteriormente implementar un modelo de aprendizaje supervisado para la predicción de la variable dependiente.

Cada problema tiene un contexto particular que debe ser considerado para la propuesta de modelos específicos, la cantidad y tipo de variables explicativas configuran el marco de referencia para la implementación de modelos.

En el caso particular de nuestro problema, el objetivo de predicción de la variable dependiente diagnóstico puede ser abordado en general desde dos perspectivas:

  • Por un lado, tenemos la meta de pronósticar con la mayor precisión si el diagnóstico para la paciente es favorable o lamentablemente desfavorable, de acuerdo a las métricas obtenidas si seguimos esta única meta el modelo de Regresión Logística nos da una precisión superior a los demás lo que se traduce en un error mínimo al clasificar, sin embargo es cuestionable su generalización a otras bases de datos relacionadas con este problema.
  • Por otro lado, tenemos la meta de generalizar este modelo a otras bases de datos, por lo que en este sentido nos inclinamos por el modelo de Regresión Logística paso a paso, dado que además de que se apega mejor a los supuestos específicos del modelo disminuye la dimensión del problema de 30 variables explicativas a 6 varaiables, esto último tiene impacto positivo en términos de procesamiento computacional y almacenamiento/recolección de datos.

Es cierto que para el objetivo de generalización perdemos puntos porcentuales de precisión (dado que la Regresión Logística paso a paso tiene una precisión del 92% en promedio) pero la ventaja de generalizar este modelo es una prioridad específicamente dadas las cifras de mortalidad que actualmente están asociadas al cáncer de mama.

Extender este modelo a bases de datos generadas por otros países, especialmente los de menor ingreso y peor cobertura de salud pública se traduce en menores tiempos de espera en diagnóstico, menor costo de procedimientos y tratamiento oportuno para las pacientes.

Otra ventaja en términos prácticos que sigue el mismo eje, es que las variables relevantes incluídas en el modelo final son 6, lo que representa una disminución del 80% en la dimensión del problema, para los países con menor presupuesto para investigación y salud será más barato crear bases de datos con solo 6 métricas por observación, también el almacenamiento y el posterior procesamiento de la información será más fácil y oportuno.

Referencias

Los datos presentados en la introducción fueron obtenidos de los siguientes artículos:

Integrantes

  • María José Sedano Castañeda
  • Dante Fernando Bazaldua Huerta
  • Carlos Alberto Gomez Vazquez

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esta aplicación: https://github.com/SaturdaysAI/Projects/tree/master/Lapaz/2021.ML2/Equipo%204

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

AlreSalud. Aplicación para medir la calidad del aire

AIreySalud: Modelación de la calidad del aire con Inteligencia Artificial

AlreSalud. Aplicación para medir la calidad del aire

Latam online. Primera Edición. 2020

¿Cómo adelantarnos al enemigo invisible?

Según la Organización Mundial de la Salud, la contaminación del aire representa uno de los mayores riesgos para la salud, mostrando una relación directa con la carga de morbilidad derivada de accidentes cerebrovasculares, diferentes cánceres de pulmón y neumopatías crónicas e incluso agudas, entre ellas el asma.

Existen estudios que confirman que alinearse a las directrices recomendadas por la OMS derivan en un impacto de hasta 22 meses más en el aumento de la esperanza de vida en la población (WHO, 2016).

Radiografía del aire

En 2016, el 91% de la población vivía en lugares donde no se respetaban las Directrices de la OMS sobre la calidad del aire. Según estimaciones de 2016, la contaminación atmosférica en las ciudades y zonas rurales provoca cada año 4.2 millones de defunciones prematuras. Un 91% de esas defunciones prematuras se producen en países de bajos y medianos ingresos, y las mayores tasas de morbilidad se registran en las regiones del Sudeste de Asia y el Pacífico Occidental.

En los países de bajos y medianos ingresos, la exposición a contaminantes en el interior y alrededor de las viviendas como consecuencia del uso de combustibles en estufas abiertas o cocinas tradicionales incrementa el riesgo de infecciones agudas de las vías respiratorias inferiores, así como el riesgo de cardiopatías, neumopatía obstructiva crónica y cáncer de pulmón en los adultos.

Existen graves riesgos sanitarios no solo por exposición a las partículas (PM10 y PM2.5, es decir, partículas menores que 10 y 2.5 micrómetros respectivamente), sino también al ozono (O3), el dióxido de nitrógeno (NO2) y el dióxido de azufre (SO2). Como en el caso de las partículas, las concentraciones más elevadas suelen encontrarse en las zonas urbanas. El ozono es un importante factor de mortalidad y morbilidad por asma, mientras que el dióxido de nitrógeno y el dióxido de azufre pueden tener influencia en el asma, los síntomas bronquiales, las alveolitis y la insuficiencia respiratoria.

Las industrias, los hogares, los automóviles y los camiones emiten mezclas complejas de contaminantes atmosféricos, muchos de los cuales son perjudiciales para la salud. De todos estos contaminantes, el material particulado fino tiene el mayor efecto sobre la salud humana. La mayor parte del material particulado fino proviene de la quema de combustible, tanto de fuentes móviles como vehículos, como de fuentes estacionarias como centrales eléctricas, industria, hogares o quema de biomasa.

Y esto… ¿cómo se mide?

La calidad del aire se mide a partir de las concetraciones de los contaminantes que están presentes en la atmósfera, en particular en el caso de las partículas finas se representa por la concentración media anual.

Aunque las partículas finas se mide en muchos lugares a lo largo del mundo, la cantidad de monitores en diferentes áreas geográficas varía, y algunas áreas tienen poco o ningún monitoreo. Para producir estimaciones globales de alta resolución, se requieren datos adicionales. La concentración media urbana anual de PM2.5 se estima con modelos mejorados utilizando la integración de datos de sensores remotos por satélite, estimaciones de población, topografía y mediciones terrestres.

Es aquí que nace AIreySalud

Con la finalidad de poder entender a nuestro amenazante enemigo, nos dimos a la tarea de hacerlo nuestro mejor amigo. Conocer hasta el más microscópico detalle para que con la ayuda de la Inteligencia Artificial nos pudiéramos adelantar a sus pasos.

Hipótesis

La concentración promedio diaria de PM2.5 se puede predecir a partir de los contaminantes y parámetros meteorológicos que se monitorean de manera rutinaria en la Ciudad de México.

Metodología de trabajo

En la literatura se recomienda seguir el siguiente plan de modelación:

  • Análisis exploratorio de datos (identificar si hay valores faltantes y valores extremos, definir el tratamiento que se les dará)
  • Si es necesario, transformar los datos
  • Ajustar modelos (definir el conjunto de entrenamiento y de prueba)
  • Ajustar un modelo univariado y validarlo.
  • Ajustar un modelo agregando fechas especiales (días de asueto y festivos) y validarlo.
  • Ajustar un modelo agregando fechas especiales y regresores adicionales y validarlo.
  • Ajustar los hiperparámetros del modelo y validarlo.
  • Seleccionar el mejor modelo de acuerdo a los criterios de minimizar errores

A estos pasos se agregaría un paso previo: seleccionar los datos para responder al problema a modelar.

Seleccionar los datos

En el tema de calidad del aire los gobiernos locales cuentan en la mayoría de las veces con información de este tipo, sin embargo, a veces llega a presentar un alto porcentaje de datos faltantes. Por otro lado, no toda la información se encuentra disponible de manera frecuente o pasa por un proceso de validación, por lo tanto se determinó emplear datos de una zona metropolitana, que cada mes publica la información validada, es el caso de la información del Sistema de Monitoreo Atmosférico de la Ciudad de México — SIMAT-).

Periodo de análisis: se consideró 5 años completos (2015 a 2019) y lo que va del año 2020.

Se descargaron los datos de contaminantes y parámetros meteorológicos de los sitios de monitoreo del SIMAT (monóxido de carbono -CO-, dióxido de nitrógeno -NO2-, óxidos de nitógeno -NOx-, óxido nitrico -NO-, ozono -O3-, partículas menorea a 10 micrómetros -PM10-, partículas PM coarse que corresponde a la diferencia entre PM10 y PM2.5 -PMCO-, partículas menores a 2.52 micrómetros -PM2.5-, dióxido de azufre -SO2-, temperatura ambiente -TMP-, humedad relativa -RH-, presión atmosférica -PA-, presión barométrica -PBa-, velocidad del viento -WSP- y dirección del viento -WDR-) y se generó una base única. La información inicial representa los registros horarios de 39 sitios (ACO, SUR, TAH, TLA, TLI, SJA, PED, SAG, SFE, TPN, XAL, CCA, MGH, AJM, VIF, UAX, UIZ, CAM, MON, CHO, COY, CUA, MER, INN, HGM, CUT, AJU, ATI, LLA, LPR, NEZ, FAC, IZT, BJU, GAM, LAA, MPA, FAR y SAC) de monitoreo automático, sin embargo, por la construcción propia de un sistema de monitoreo de calidad del aire, no todos los sitios monitorean todos los contaminantes y parámetros meteorológicos. Aunado a esto, en el año 2017 se registró un sismo en la Ciudad de México que dañó la infraestructura de algunas instituciones en las que se localizaba estaciones de monitoreo, lo cual derivó en retirar los equipos de medición de esos lugares. Otra característica que presenta este tipo de fenómenos es la dependencia de sus registros con los ciclos temporales ya que su comportamiento se ve influenciado por la época del año y la hora del día (efecto de inversiones térmicas, época de lluvias, estabilidad atmosférica, horas pico del día, ubicación de fuentes de contaminación, entre otras).

Tabla.1. Listado de los sitios de monitoreo de calidad del aire del SIMAT.

Listado de los sitios de monitoreo de calidad del aire del SIMAT
Mapa 1. Localización de los sitios de monitoreo de calidad del aire del SIMAT (2020).
Mapa 1. Localización de los sitios de monitoreo de calidad del aire del SIMAT (2020).

Todo esto implicó que se realizaran varios pasos para determinar la inclusión de los sitios para este análisis.

Preprocesamiento de datos

Selección de sitios:

  1. Aquellos que monitorean PM2.5 (a saber: TLA, SJA, PED, SAG, SFE, XAL, CCA, MGH, UAX, UIZ, CAM, COY, MER, NEZ, HGM, AJM, BJU, INN, AJU, GAM, MPA, MON, SAC y FAR)
  2. Aquellos que presentan registros en el año 2019 y cuentan con al menos el 75% de registros de ese año (a saber: TLA, PED, SFE, XAL, CCA, AJM, MON, MER, HGM, NEZ y GAM).
Mapa 2. Localización de los once sitios de monitoreo de calidad del aire del SIMAT que serán modelados.
Mapa 2. Localización de los once sitios de monitoreo de calidad del aire del SIMAT que serán modelados.

El registro continuo de este tipo de datos requiere un programa de aseguramiento y control de calidad de las mediciones, el cual implica la pérdida de registros, por ejemplo, cuando se realizan calibraciones y revisión del correcto funcionamiento de los equipos automáticos; así como, por la falta de insumo de energía eléctrica que conlleva la reactivación de los equipos. Esto se refleja en tener valores faltantes (missing values) en las bases de datos, por lo tanto, se debe plantear un tratamiento para el relleno de datos faltantes.

Análisis exploratorio de datos

  1. Se realizó la exploración de los sitios para identificar posibles asociaciones entre ellos por cada parámetro.
  2. Se revisó si existe alguna dependencia con rezago en las horas para cada parámetro.
  3. Se realizó la exploración asociada a la dirección del viento, para identificar alguna dependencia relacionada con la dirección de donde proviene el viento.

Para el análisis exploratorio se empleó la librería Open air de r-project.

Relleno de datos faltantes

  1. Se considera emplear modelos que permitan el ajuste aún con datos faltantes en la variable objetivo o respuesta (PM.2.5).
  2. De igual manera se considera emplear modelos que requieren que la variable respuesta no contenga faltantes, por lo que se emplearán varios métodos de imputación de valores faltantes para PM2.5 (cabe comentar que por la naturaleza de este tipo de datos rellenar con la media, mediana o alguna otra constante no es recomendable). Previamente se realizará una comparación de los métodos con un conjunto de datos completo en el que se simulan los faltantes y se evalúa el error de la imputación para seleccionar el mejor modelo de relleno de faltantes (se identifica el tipo de datos faltantes que rige a este fenómeno (MCAR, MAR o NMAR por sus siglas en inglés), que se refieren a un comportamiento completamente aleatorio, de forma aleatoria o bien no sigue un proceso aleatorio, respectivamente.
  3. En el caso de los modelos de pronóstico en el tiempo, se requiere que las variables regresoras no tengan faltantes en el período de entrenamiento ni en el periodo de prueba. Además, se requiere datos futuros para el pronóstico de PM2.5; por lo tanto, también se debe realizar imputación de datos faltantes.

Para el proceso de relleno de datos faltantes se exploraron varias técnicas sin llegar a buenos resultados ya que generaban valores constantes para el relleno (por ejemplo las opciones que tiene implementada la rutina Fancyimpute de Python), entre ellas:

  • SimpleFill: reemplaza las entradas que faltan con la media o mediana de cada columna.
  • KNN: imputación de vecinos más cercanos a través de la ponderación de registros usando la diferencia cuadrática media de las variables en las que dos filas tienen datos observados.
  • SoftImpute: compleción de la matriz mediante umbral suavizado iterativo de las descomposiciones de la SVD. Inspirado en el paquete SoftImpute para R, que se basa en algoritmos de regularización espectral para el aprendizaje de grandes matrices incompletas de Mazumder et. al.
  • IterativeImputer: una estrategia para imputar valores faltantes al modelar cada característica con valores perdidos como una función de otras características en forma rotativa. Un código auxiliar que se vincula al IterativeImputer de scikit-learn.
  • IterativeSVD: Compleción de la matriz mediante descomposición iterativa de SVD de bajo rango. Debería ser similar a SVDimpute de los métodos de estimación de valores perdidos para microarreglos de ADN de Troyanskaya et. al.
  • MatrixFactorization: factorización directa de la matriz incompleta en U y V de rango bajo, con una penalización por escasez de L1 en los elementos de U y una penalización de L2 en los elementos de V.
  • NuclearNormMinimization: implementación simple de Compleción de la matriz exacta a través de Optimización convexa por Emmanuel Candes y Benjamin Recht usando cvxpy. Demasiado lento para matrices grandes.
  • BiScaler: estimación iterativa de la media por fila/columna y desviación estándar para obtener una matriz doblemente normalizada. No se garantiza que converja, pero funciona bien en la práctica. Tomado de Completar matriz y SVD de bajo rango a través de mínimos cuadrados alternativos rápidos.

Por lo que se decidió rellenar a partir del perfil horario de la serie de datos, es decir considerando el promedio de registros para la misma hora a lo largo de la serie, esto asegura que se cuente con un valor diferenciado por hora y no se generan datos constantes para todos los registros faltantes.

Transformar los datos

En algunas ocasiones es recomendable transformar los datos para obtener un mejor ajuste, sin embargo algunas transformaciones pueden ocasionar falta de interpretación de los resultados, por lo cual se recomienda emplear transformaciones sencillas y fácil de revertir al momento de la interpretación.

En el caso de la variable respuesta (PM2.5) se transformará con el logaritmo natural para contar con un mejor comportamiento de los datos.

Y=ln(PM2.5)

En el caso de los regresores (o covariables) se estandarizan los datos en cada variable, debido a que cada una por su naturaleza está en unidades y escalas variadas.

Ajustar modelos

La librería Prophet de facebook (fbprophet),permite pronosticar datos de series de tiempo basado en un modelo aditivo donde las tendencias no lineales se ajustan a la estacionalidad anual, semanal y diaria, más los efectos de los días festivos. Funciona mejor con series de tiempo que tienen marcados efectos estacionales y varias temporadas de datos históricos. Prophet es robusto ante los datos faltantes y los cambios de tendencia, y normalmente maneja bien los valores atípicos.

Para modelar la serie temporal Prophet, separamos la señal en los siguientes componentes aditivos:

y(t)= g(t) + s(t) + h(t) + εt

Dónde:

  • y(t) es la variable a pronosticar
  • g(t) es la función de tendencia que modela cambios no periódicos usando un modelo de crecimiento de saturación no lineal o un modelo de regresión lineal por partes. Puede configurar esto usando parámetros.
  • s(t) es el funcional estacional (anual, semanal y diario) que modela los cambios periódicos en el valor de la serie temporal. Este componente se modela mediante una transformada de Fourier y, si lo desea, puede agregar sus propias estacionalidades.
  • h(t) representa la función para modelar días festivos y eventos de impacto especial. Puede agregar su propio conjunto de feriados personalizados y eventos especiales.
  • εt es el error/ruido de los modelos que se supone que tiene una distribución

Para un descripción más detallada del algoritmo consultar https://peerj.com/preprints/3190/

El algoritmo funciona mejor con series de tiempo que tienen fuertes efectos estacionales y varias temporadas de datos históricos. Prophet es robusto ante los datos faltantes en la variable de salida y a los cambios de tendencia, y normalmente maneja bien los valores atípicos (outliers).

Se establecieron los grupos de entrenamiento y prueba para evaluar los modelos considerando la secuencia de la información y a diferencia de tomarlos al azar, se estableció dejar los primeros cuatro años como periodo de entrenamiento y el último año como periodo de prueba.

Resultados

Seleccionar los datos

Se seleccionaron los datos de calidad del aire de las estaciones localizadas en la Zona Metropolitana de la Ciudad de México, que presentan registros entre los años 2015 y 2020, de estas estacione se realizó un filtro para tener las estaciones que contaban con registros de PM2.5, a estas estaciones se les realizó un segundo filtro para contar con las estaciones que registraron dato en el año 2019 y que contaron con suficiencia anual (al menos el 75% de registros horarios en el año) de esta manera se contó con un conjunto de once estaciones (ver Mapa 2).

Análisis exploratorio de datos

El análisis exploratorio permitió conocer el comportamiento de cada variables, en el caso de PM2.5 (Figura 1) se observó que hay diferencias entre las estaciones, ya que algunas presentan mayor cantidad de eventos atípicos, esto se debe principalmente al lugar en el que se localiza cada estación y las fuentes de contaminación asociadas a ellas.

Figura 1. Comportamiento de PM2.5 de los once sitios elegidos para la modelación

Para ejemplificar el resto de los resultados se presenta el caso de la estación Ajusco Medio (AJM), para su localización consulte el Mapa 2.

El análisis por variable deja ver que son frecuentes los periodos de ausencia de datos, la diferencia en el comportamiento de cada parámetro (algunos presentan distribuciones sesgadas a la derecha, otros a la izquierda y algunos su distribución es simétrica, algunos presentan más de una moda y suele haber datos atípicos) (Figura 2).

El comportamiento de PM2.5 con respecto a la dirección del viento, muestra una clara asociación en meses de invierno (enero y diciembre) en la dirección noreste y con una franja de influencia del norte al este, y en los meses de abril y mayo se repite con un ligero corrimiento hacia el sur (colores rojos en la Figura 3), también se identifica la dilución de este contaminante en los meses de lluvias, ya que predominan los colores azules, verdes y amarilos en todas las direcciones del viento.

Figura 2. Distribución de los registros horarios en la estación Ajusco Medio (AJM) y representación de la rosa de concentraci
Figura 2. Distribución de los registros horarios en la estación Ajusco Medio (AJM) y representación de la rosa de concentración desagregada por mes

La desagregación por época climática para cada año permite apreciar los cambios a lo largo del periodo, (cabe comentar que la época invernal considera el diciembre de un año y el enero y febrero del siguiente año), se identifica el cambio de rojos a naranjas a lo largo de los años en la época invernal y en 2020 no registró esos colores (presenta concentraciones menores). También se marca la influencia de la primavera (marzo a mayo) con concentraciones altas principalmente en 2016, 2017 y 2019 (Figura 4).

Figura 3. Representación de la rosa de concentración de PM2.5 desagregada por mes
Figura 4. Distribución por época climática (primavera, verano, otoño e invierno) de la rosa de concentración desagregada por
Figura 4. Distribución por época climática (primavera, verano, otoño e invierno) de la rosa de concentración desagregada por año.

La serie de tiempo de los registros horarios de PM2.5 se representa en la Figura 5, se puede apreciar los espacios en blanco correspondientes a los valores faltantes en esos días, así como la variación del fenómeno y los valores extremos.

Figura 5. Serie de tiempo de la concentración horaria de PM2.5 en el periodo 2015–2020 para la estación AJM.
Figura 5. Serie de tiempo de la concentración horaria de PM2.5 en el periodo 2015–2020 para la estación AJM.

La modelación se realizará con registros promedios diarios de PM2.5 por lo que se visualizó el comportamiento de estos en la Figura 6.

Figura 6. Series temporales de los promedios diarios para los diferentes contaminantes y parámetros meteorológicos en AJM (20
Figura 6. Series temporales de los promedios diarios para los diferentes contaminantes y parámetros meteorológicos en AJM (2015–2020).

La variación de PM2.5 a partir de registros diarios permite identificar la presencia de ciclos asociados a los meses y años (Figura 7).

Figura 7. Concentración diaria de PM2.5 en el periodo 2015–2020 para la estación AJM.

Transformar los datos

En el caso de PM2.5 la transformación fue con el logaritmo natural, la Figura 8 muestra el comportamiento original y la transformación, donde se busca tener una distribución más apegada a la simetría.

Figura 8. Distribución de PM2.5, original y transformada (AJM, 2015–2020).
Figura 8. Distribución de PM2.5, original y transformada (AJM, 2015–2020).

En el caso de los regresores se realizó la transformación por separado para el conjunto de datos de entrenamiento y de prueba (Figura 9).

Figura 9. Distribución de regresores estandarizados en el conjunto de entrenamiento y de prueba (AJM, 2015–2020)

Ajustar modelos

Comenzamos modelando la serie univariada de PM2.5 sin imputar faltantes ya que el modelo maneja la falta de información en la variable de salida.

Generamos el conjunto de entrenamiento desde el 2015–01–01 hasta el 2018–12–31 y el conjunto de prueba a partir del 2019–01–01 y hasta el 2020–09–30 para entrenar y evaluar el modelo respectivamente. Se incorporan los días festivos de México al modelo para lograr un mejor ajuste.

Fragmento de código con los valores de los hiperparametros utilizados para entrenar el algoritmo:

pro_change=Prophet(changepoint_range=0.9,yearly_seasonality=True,

holidays=holidays)

pro_change.add_country_holidays(country_name=’MX’)

forecast = pro_change.fit(train).predict(future)

fig= pro_change.plot(forecast);

a = add_changepoints_to_plot(fig.gca(), pro_change, forecast)

El modelo genera un valor predictivo llamado yhat, y un intervalo de confianza con límite inferior yhat_lower y límite superior yhat_upper para la concentración de PM2.5, fijamos el nivel de confianza del 95%.

Fragmento de código para hacer el cross validation

from fbprophet.diagnostics import cross_validation

cv_results = cross_validation( model = pro_change, initial = ‘731 days’, horizon = ‘365 days’)

En la Figura 10 los puntos negros representan los valores de concentración promedio diaria de PM2.5, la curva en azul oscuro es el pronóstico generado por el modelo y la zona azul celeste es el intervalo de confianza al 95 %.

Figura 10. Ajuste del modelo de PM2.5 en la estación AJM

En la Figura 11 se muestra la descomposición de la serie en su tendencia, los días festivos, la estacionalidad semanal y anual.

Figura 11. Descomposición de la serie de PM2.5 en la estación AJM.

La función performance_metrics se puede utilizar para calcular algunas estadísticas útiles para medir el desempeño de la predicción (yhat, yhat_lower y yhat_upper versus y), en función de la distancia desde el límite (qué tan lejos en el futuro estaba la predicción). Las estadísticas calculadas son el error cuadrático medio (MSE), la raíz cuadrada del error cuadrático medio (RMSE), el error absoluto medio (MAE), el error porcentual absoluto medio (MAPE), el error porcentual absoluto medio (MDAPE) y la cobertura de las estimaciones yhat_lower y yhat_upper. Estos se calculan en una ventana móvil de las predicciones en el dataframe después de clasificar por horizonte (ds menos cutoff). Por defecto, el 10% de las predicciones se incluirán en cada ventana, pero esto se puede cambiar con el argumento rolling_window.

Fragmento de código para la obtención de las métricas

Una vez que se corrieron los diferentes modelos, se realizó la comparación de las métricas para determinar el mejor modelo. En el caso de AJM, el mejor modelo a partir de RMSE fue el ajuste con hiperparámetros, seguido del modelo con regresores en general. Para todas las métricas, el modelo con menor error fue el de los hiperparámetros.

Tabla 2. Comparativa de las métricas de los modelos ajustados (AJM, 2015–2020)

A continuación se presenta la representación gráfica del mejor modelo ajustado, distinguiendo el periodo de entrenamiento, el de prueba y el pronóstico (Figura 12).

Figura 12. Ajuste del mejor modelo (AJM, 2015-2020)

Como resultado agregado al modelar estos datos, podemos detectar si en días futuros se puede presentar algún riesgo para la salud, con referencia a las Directrices de la Organización Mundial de la Salud para el promedio de 24 horas de PM2.5 (25 g/m³) y los rangos establecidos en el Índice AIRE y SALUD de México (NOM-172-SEMARNAT-2019).

Tabla 3. Niveles de riesgo de la calidad del aire (2020)

Fuente:Comisión Ambiental de la Megalópolis (CAMe)

En el caso de Ajusco Medio el pronóstico identifica registros posibles entre las bandas de calidad del aire buena y aceptable, y al considerar el intervalo de confianza del modelo (Figura 13) se identifica que los registros podrían llegar hasta la banda de calidad el aire mala, lo que podría presentar algún riesgo para la población.

Figura 13. Alertas por calidad del aire en AJM, datos medidos y pronóstico al 31/01/2021

Qué sigue

Se abre un mar de oportunidades para mejorar este primer acercamiento a modelar la calidad del aire por medio de inteligencia artificial. Los modelos se aplicaron a cada una de las estaciones, pero se puede desarrollar un modelo multiseries. De igual manera se estableció el total de variables contra las que se realizó el ajuste, pero se puede realizar una búsqueda entre los regresores que mayor aportación presentan al modelado de PM2.5.

Desarrollar una aplicación para dar difusión de los resultados.

Probar otros conjuntos de datos de diferentes ciudades.

y mucho más…

Referencias

Basheer O, et al. Imputation of Missing Values in Daily Wind Speed Data Using Hybrid AR-ANN Method Modern Applied Science 9(11):1, June 2015

Mazumder R., Hastie T., Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. The Journal of Machine Learning Research 11, 2287–2322

Medina F. y Galván M. Imputación de datos: teoría y práctica. CEPAL, 2007.

Shaadan N. and RahimN A M. 2019 J. Phys.: Conf. Ser. 1366 012107.

Taylor SJ, Letham B. 2017. Forecasting at scale. PeerJ Preprints 5:e3190v2

Troyanskaya G, et al. Missing Value Estimation Methods for DNA Microarrays June 2001. Bioinformatics 17(6):520–525

WHO, 2016. Health risk assessment of air pollution — general principles. Copenhagen: WHO Regional Office for Europe; 2016.

Librerías o paquetes

Carslaw, D. C. and K. Ropkins, (2012) openair — — an R package for air quality data analysis. Environmental Modelling & Software. Volume 27–28, 52–61.

Facebook Open Source, Prophet. https://facebook.github.io/prophet/

Fancyimpute https://github.com/iskandr/fancyimpute

Integrantes

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esa aplicación: https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/SaturdaysAI-LATAM_AIreySalud_2020-main

¡Más Inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

BasketTracker.AI

BasketTracker.AI: Inteligencia artificial para la bolsa de la compra

BasketTracker.AI

Latam online. Primera Edición. 2020

Lo que no se mide, no se puede mejorar…

Las altas y bajas en los precios son un fenómeno que todos vivimos a diario. Es tan cotidiano que muchos damos por hecho que se trata de una situación que no podemos cambiar y que sólo nos queda ajustar nuestro presupuesto ante los incrementos que suceden.

¿Será posible crear herramientas que nos ayuden a adaptarnos mejor al cambio en los precios? Nosotros creemos que sí.

En este artículo les mostraremos cómo fué que mientras aprendíamos un poco de Inteligencia Artificial también implementamos un prototipo para monitorear precios de tiendas en línea.

Muchas veces sin saber compramos bienes cuyo precio está en aumento y según la ley de oferta y demanda, solo reforzamos su tendencia alcista cuando consumimos estos productos. Si por el contrario, supiéramos cómo sustituir estos artículos caros con “equivalentes” de menor costo, a largo plazo ayudaríamos a generar un nivel de precios más bajo.

Así que nos propusimos hacer un prototipo para monitorear dichos precios. Desde los primeros intercambios de ideas que tuvimos nos dimos cuenta que eran varios los desafíos que debíamos superar para lograr nuestro propósito.

¿Y dónde están los precios?

La primera pregunta que planteamos fue cuáles serían los precios que nos interesaba recabar. Decidimos iniciar con algunos artículos de consumo básico: (a) huevo, (b) frijol, (c) papel higiénico, (d) café y (e) tortillas.

Lo más sorprendente de todo es que la mayoría de la información de precios se encontraba a nuestro alcance. Existe una gran cantidad de supermercados que publican catálogos de sus productos en línea. Para la fase inicial decidimos extraer los precios de los artículos de dos supermercados mexicanos: Soriana y Superama.

Nuestros compañeros Gabriela y Gustavo trabajaron en la extracción de precios, utilizando web scraping. El web scraping es una técnica que permite automatizar la extracción de datos alojados en páginas web. En la siguiente imagen mostramos la información que deseamos extraer desde el sitio web:

Captura de pantalla del sitio Soriana para el producto “huevo”
Captura de pantalla del sitio Soriana para el producto “huevo”

Con sus habilidades de Ingeniería de Datos, nuestros AI fellows desarrollaron una serie de scripts con Python, Selenium, entre otras herramientas. Como resultado de esta etapa de extracción, consiguieron generar nuestros primeros conjuntos de datos en bruto (Raw Datasets):

Precio de los huevos
Raw Dataset Superama
Precio de los huevos II
Raw Dataset Soriana

Entre los principales retos enfrentados fueron: (a) Simular el comportamiento de una persona. Si la velocidad de generación de consultas al sitio web es mayor que la que un usuario corriente haría, normalmente los sitios bloquean a los scripts. Por ello fue necesario considerar retrasos en las consultas para evitar ser bloqueados. (b) La estructura de los sitios web, aunque similar, es diferente. Fue necesario hacer pequeñas adecuaciones para cada uno de los sitios.

Integración de datos con AI

Cuando revisamos los primeros Raw Data sets generados, observamos que era necesario trabajar en homologar criterios de nomenclatura entre las fuentes Soriana y Superama, sobre todo en el campo “descripción”.

Ramón y Juan Esteban tomaron la iniciativa para aplicar técnicas de Natural Language Processing (NLP) para integrar los Raw Data sets obtenidos de Soriana y Superama.

Nuestros colegas propusieron enriquecer el Raw Dataset con las siguientes columnas:

  • Tipo: Es el tipo principal de producto. Por ejemplo, “huevo” puede ser un descriptor para cualquier marca de huevo.
  • Tipo_2 : Es el segundo descriptor, útil para construir una subcategoría al Tipo. Por ejemplo, huevo blanco y huevo rojo son dos tipos de huevo que se necesita diferenciar.
  • Marca: Información sobre marca y submarca de cada Tipo.
  • Empaque: Empaque de cada Tipo.
  • Contenido: Cantidad de cada Tipo en un Empaque.
  • Unidad de medida: Corresponde a cada cantidad en Contenido.

Los scripts que desarrollaron emplearon las siguientes bibliotecas de Python:

  • Nltk
  • Sklearn
  • Fancyimpute
  • Pandas
  • Numpy
  • Unidecode
  • Re

Este diagrama describe los pasos para unificar los datos de Soriana y Superama:

Diagrama de flujo para limpieza de datos
Diagrama de flujo para limpieza de datos

Adicional de las técnicas de lenguaje natural descritas en el diagrama, realizaron la simplificación del diccionario de categorías de forma manual, con la que evitaron considerar palabras derivadas o aquellas que no aportan información valiosa.

También realizaron la imputación de valores faltantes aplicando una técnica condicional con la que la inferencia de valores imputados se realiza utilizando una secuencia lógica. Por ejemplo, si conocemos que comúnmente la unidad de medida de la leche es por L o ml, la categorización sigue una secuencia lógica para imputar este valor.

Aplicando las técnicas de lenguaje natural más la imputación descrita, generaron el siguiente conjunto de datos enriquecido.

Conjunto de datos depurado
Conjunto de datos depurado

Los principales retos de la metodología empleada se exponen a continuación: (1) La creación manual de los diccionarios de palabras para poder categorizar en las columnas de interés correspondientes. Por ejemplo, la categorización del tipo de alimento que se describe. (2) Procesar palabras nunca antes vistas por el diccionario. Los anglicismos juegan un papel importante en el léxico hispano por lo que un reto importante es la traducción de los anglicismos o en su defecto incluirlos en el diccionario de categorías.

Precios como series de tiempo

Con un Data set depurado de precios, pareciera que tendríamos los elementos necesarios para hacer análisis más detallados como pronósticos de precios. Pero debido a que la dinámica de precios presenta cambios significativos en espacios de tiempo de una semana, para el tiempo que escribimos este artículo solo contábamos con unos cuantos puntos recolectados semanalmente.

De acuerdo con un artículo escrito por Box y Jenkins en 1976, se recomienda al menos 50 observaciones para realizar pronósticos confiables y en trabajos más actuales, como el de Otero y Trujillo en 1998, se han obtenido buenos resultados con 30 observaciones.

A pesar de esta situación adversa, dos miembros del equipo, John y Mario, quisimos iniciar el análisis de series de tiempo con un conjunto de datos independiente que si contara con dicha cantidad de observaciones, para simular el pronóstico de los precios futuros con el criterio de que el modelado sea automático, es decir, que se seleccione el modelo con mejor MAPE (Mean Absolute Percentage Error). Analizamos los siguientes algoritmos:(1) Auto Arima, (2) Suavizado Exponencial triple, (3) Facebook Prophet.

A continuación mostramos los resultados que obtuvimos al modelar cuatro acciones (spx, dax, ftse, nikkei) que se cotizan en diferentes bolsas, con el algoritmo que obtuvo el mejor desempeño:

BasketTracker.AI: Monitor de precios

Finalmente, coronamos el esfuerzo descrito anteriormente con una herramienta de visualización que nos permitiera sacar provecho de nuestro Dataset depurado y enriquecido, para ayudar a la toma de decisiones en precios.

Nuestro compañero Juan Manuel y nuestro mentor David, tomaron el liderazgo de la comunicación visual, así como del despliegue del monitor BasketTracker.AI en una aplicación web.

A continuación presentamos los elementos que elegimos comunicar visualmente: (1) Series de tiempo y predicción, (2) Cálculo de inflación de productos, (3) Comparativa entre marcas y tiendas, (4) Top 3 de artículos con mayor/menor costo y algunos KPIs

Consideramos que todo lo anterior debíamos consolidarlo en un solo punto. Debería ser algo de fácil acceso que reuniera todos los elementos que definimos desarrollar en un inicio y presentarlos de manera sencilla hacia el usuario final. Por esto decidimos que la mejor manera de lograrlo sería con un dashboard general de resultados.

Se crearon dos dashboards interactivos, el primero usando el software Tableau y el segundo la herramienta QuickSight de Amazon.

A continuación mostramos algunos screenshots de los dashboards:

Dashboard QuickSight
Dashboard Tableau

Conclusiones

En este artículo compartimos nuestra experiencia desarrollando un monitor de precios como proyecto de equipo en la primera edición de Saturdays AI Latinoamérica. Nos sentimos satisfechos de haber acoplado diferentes disciplinas dentro de la Inteligencia Artificial, como son NLP y pronóstico de series de tiempo, con aspectos de integración de datos y desarrollo web y de Business Intelligence para construir una prueba de concepto para monitorear precios.

Desde luego que hay todavía muchas mejoras que realizar y probablemente las desarrollaremos en futuras versiones de nuestro trabajo.

Esperamos que este artículo los motive a fortalecer sus habilidades en Inteligencia Artificial, poniendo en práctica sus conocimientos para aprender haciendo. Hasta la próxima.

Bibliografía

Box, G. E. P., and G. M. Jenkins. 1976: Time Series Analysis: Forecasting and Control. Ed. Holden-day. San Francisco.

Otero, J; Trujillo, F. 1998: “Forecasting Tourism Demand in the Short Term: The Case of Andalusian Hotel Establishments”, 4th International Forum on Tourism Statistics. Copenhague

Integrantes

  • Gabriela Vega
  • Gustavo Leyva
  • Juan Esteban Zurita
  • Juan Manuel Ahumada
  • John Jacho
  • Ramón Díaz
  • Mario Fonseca

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esta aplicación: https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/equipo_dorado

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Anxietweet AI

Anxietweet AI: Detección de estrés en tweets mediante Inteligencia Artificial

Detección de estrés en tweets durante la pandemia SARS-CoV-2(COVID-19)

Anxietweet AI

Latam online. Primera Edición 2020

El estrés: una ‘epidemia’ silenciosa que puede afectar a cualquier persona durante la era moderna, ahora es más notoria debido a la mayor crisis sanitaria enfrentada durante este siglo. Los niveles de preocupación, impacto económico y emocional que han tenido que afrontar las personas han sido factores que han impactado no solo la salud física también la mental de millones de personas.

En este trabajo de inteligencia artificial (ciencia de datos), se realiza un esfuerzo para analizar, predecir y determinar, si una persona está estresada con el uso de sus mensajes a través de la red social de Twitter.

Problema general

¿Es posible que una máquina pueda determinar si una persona está estresada solo con la expresión escrita?

Motivación

Social: ayudar a identificar y reconocer el estrés durante la crisis sanitaria para así conocer el estado emocional de las personas sin necesidad de un estudio en persona

Profesional: obtener, extender y aplicar los conocimientos sobre ciencia de datos e inteligencia artificial, en el análisis de lenguaje humano y en reconocimiento de emociones

Metodología

La metodología con la que se trabajó en este proyecto está basada en la metodología tradicional de CRISP-DM [1]. A continuación se muestra el diagrama general de los pasos que se llevaron a cabo en este trabajo.

Diseño del modelo de reconocimiento:

Recolección de datos

Para llevar a cabo el análisis se recolectaron datos de tweets de 3 diferentes ciudades para poder tener muestras variadas y esperar resultados diferentes. Las ciudades fueron elegidas solamente tomando en cuenta que fueran ciudades grandes en diferentes países angloparlantes.

Las ciudades de las que se obtuvieron los datos fueron las siguientes:

  • Brisbane, Australia (2225 tweets)
  • San Francisco, Estados Unidos (5000 tweets)
  • Vancouver, Canadá (1699 tweets)

Cabe mencionar que los datos fueron recolectados el 24 de octubre y los tweets tienen fecha máxima de publicación una semana anterior a la fecha de recolección y mínima del mismo día de la recolección.

Las palabras claves que se utilizaron para la recolección fueron las siguientes:

covid OR COVID OR coronavirus OR corona OR coronavirus OR #coronavirus OR #covid19 OR covid19 OR sarscov2 OR #covid-19 OR #sarscov2 OR sars OR cov2 OR sars OR #quarantine OR pandemic OR #pandemic OR #2019ncov OR 2019ncov OR quarantine OR lockdown OR #lockdown OR social distancing OR #socialdistancing OR #COVID OR #covid”

La estructura de los datos es idéntica para los 3 datasets. Cada dataset está organizado en 3 columnas:

  • user_location: Ubicación aproximada del usuario (si su ubicación está activada).
  • date: Fecha de publicación del tweet.
  • text: Texto del tweet.

Los datos anonimizados se obtuvieron a través de la API de Twitter a través de un script de Python utilizando Tweepy [2].

tweepy

Etiquetado

Para el etiquetado de los datos, fue utilizada una herramienta llamada TensiStrength, la cuál está desarrollada en Java, y ayuda a evaluar el nivel de relajación o ansiedad que se puede encontrar en un texto sencillo. Esta herramienta funciona por medio de diccionarios de emociones en los cuales se asignan valores a las palabras positivas o negativas y a su vez también cuenta con un diccionario de palabras (booster words) que incrementan el valor de la expresión/emoción.

TensiStrength logra catalogar los textos de dos maneras disponibles, binaria o ternaria; la ternaria los clasifica en 1, 0, -1, positivo, neutral y negativo respectivamente. El esquema para la clasificación de emociones utilizado en nuestro modelo, utiliza la clasificación de tipo binaria, que consiste en usar las etiquetas 1 y 0, las cuales corresponden a “estrés” y “no estrés”.

Las clases se encuentran distribuidas con un porcentaje de:
Tweets con estrés = 49.972%
Tweets sin estrés = 50.028%

Exploración de los datos:

Cantidad de tweets con estrés.

Porcentaje de estrés por ciudad

Porcentaje de estrés por ciudad, representa la cantidad de tweets con estrés respecto al total de tweets.

Palabras más usadas en los tweets, excluyendo conectores.

Palabras más usadas en los tweets, excluyendo conectores y palabras relacionadas con Covid.

Distribución de las palabras en los Tweets según su longitud

Pre-procesamiento de los datos:

Después de recolectar los datos, se llevó a cabo un pre-procesamiento con el fin de que los datos se pudieran utilizar para entrenar un modelo clasificador. Este paso es uno de los más importantes y es aquel que comúnmente consume más tiempo en un proyecto de aprendizaje de máquina.

  • Reducción de Ruido: se eliminaron espacios extras, carácteres especiales y ligas a otras páginas.
  • Normalización: los carácteres se transformaron a minúsculas, se eliminaron puntuaciones y se expandieron las contracciones.
  • Eliminación de palabras vacías o Stopwords: se removieron aquellas palabras que no tienen un significado por sí mismas (artículos, pronombres, preposiciones y algunos verbos)
  • Lematización: se llevó a cabo una lematización, la cual consiste en convertir la palabra a su forma base (i.e. mesas a mesa).
  • Tokenización: finalmente los textos se separaron en palabras, también llamados tokens.

Antes del pre-procesamiento, el texto se visualiza de la siguiente manera:

Posterior a la limpieza y previo a la tokenización, el texto se visualiza de la siguiente manera:

Visualización de datos

Fue realizada por medio de nubes de palabras, en general y dividiendo los datos por clase.

Palabras más recurrentes en general:

Palabras más recurrentes dentro de los datos clasificados como SIN estrés

Palabras más recurrentes dentro de los datos clasificados como CON estrés

LDA (Latent Dirichlet Allocation)

Se utilizó un clasificador de modelo generativo LDA (no supervisado), que permite que a partir de una bolsa de palabras, se genere un conjunto de observaciones que puedan ser explicadas por algunas de las partes de los datos que son similares o que tienen cierta concordancia. Este es un modelo de categorías y fue presentado como un modelo de grafos para descubrir categorías por David Blei, Andrew Ng y Michael Jordan en 2002.

En nuestro trabajo se utilizó a partir de de la vectorización de la data tratada y limpia de los tweets obtenidos, una tokenización y generando una vectorización de las palabras.
Obteniendo un clasificador de 2 tópicos, en las cuales sus principales palabras fueron:

Tópico 0: Covid case new health vaccine death year trump plan day

Tópico 1: Covid people trump go new case mask know say need

y utilizando la librería pyLDAvis
se obtuvo el visualizador:

Modelado

Para este proyecto se evaluaron cinco modelos de Machine Learning. Como modelo base se utilizó Naive Bayes y se comparó con:

  • Regresión Logística
  • K-Nearest Neighbors
  • Random Forest
  • Gradient Boosting.

Para la vectorización [4] de los tweets se evaluaron 2 técnicas: Bag of Words y TF-IDF (term frequency — inverse document frequency) y dos estrategias para sus n-gramas: Bigrama y Trigramas [5].

Los resultados se midieron por medio del AUC (Area Bajo la Curva) y se evaluaron con validación cruzada (k = 10). Tanto el preprocesamiento, entrenamiento y evaluación del modelo se llevaron a cabo dentro de un “pipeline” creado dentro de una clase utilizando el lenguaje de programación de Python.

Nivel de precisión para cada modelo implementado con “Bigrams”
Nivel de precisión para cada modelo implementado con “Trigrams”

En las gráficas de AUC previas se muestra que la combinación ganadora es la de: RFt + BoW + Bigramas, ya que es la mejor en discernir los mensajes que tienen alguna relación con estrés de aquellos que no la tienen.

A continuación podemos observar la matriz de confusión del modelo ganador, así como los resultados de sus métricas.

Optimización (‘Tuneo’) del modelo:

El ajuste fue realizado para tres modelos con el fin de mejorar su desempeño.

Logistic Regression
Se genera una búsqueda de grilla utilizando grid search al cual se le definen ciertos valores con los que se ejecutará el modelo para obtener la versión con mejor Accuracy. Para esto se consideró:
1.- Valor C
2.- Penalty del modelo: L1 (Lasso) y L2 (Ridge)

Random Forest Classifier
Se genera una búsqueda de grilla utilizando grid search al cual se le definen ciertos valores con los que se ejecutará el modelo para obtener la versión con mejor Accuracy. Para esto se consideró:
1.- Número de Estimadores: número de árboles utilizados en el bosque. Este valor empezará en 200 e irá de 10 en 10 hasta llegar a 2000.
2.- Max_Features: es el número de atributos a considerar para la mejor división. Se prueba con “auto” que se refiere a que el máximo de atributos será la raíz cuadrada del número de atributos.
3.- Max_depth: esto se refiere a la máxima profundidad del árbol. Para este caso se parte en 10 hasta 110 avanzando de 11.
4.- Min_Samples_split: es el número mínimo de muestras requeridas para la división interna del nodo. Se prueba con 2, 5 y 10.
5.- Min_samples_leaf: el número mínimo de muestras requeridas para ser una hoja de nodo. Se considera 1, 2 y 4 para realizar la búsqueda de grilla.
6.- Bootstrap: Si es Verdadero, usará bottstrap en la construcción de los árboles. Si es falso no se utilizará. Se probará con ambas.

Gradient Boosting Classifier
Se genera una búsqueda de grilla utilizando grid search al cual se le definen ciertos valores con los que se ejecutará el modelo para obtener la versión con mejor Accuracy. Para esto se consideró:
1.- Loss: se usa desviance para evaluar como regresión logística la función de pérdida
2.- Learning:rate: es la medición que mide la contribución de cada árbol.
3.- Max_Features: es el número de atributos a considerar para la mejor división. Se prueba con “sqrt” que se refiere a que el máximo de atributos será la raíz cuadrada del número de atributos, en el caso de “log2” se usa el logaritmo del número de atributos.
4.- Max_depth: esto se refiere a la máxima profundidad del árbol. Para este caso se usa 3, 5 y 8.
5.- Min_Samples_split: es el número mínimo de muestras requeridas para la división interna del nodo. Se prueba con un linspace de 0.1, 0.5 y 12.
6.- Min_samples_leaf: el número mínimo de muestras requeridas para ser una hoja de nodo. Se prueba con un linspace de 0.1, 0.5 y 12.
7.- Numero de Estimadores: número de árboles utilizados en el bosque. Este valor empezará en 200 e irá de 10 en 10 hasta llegar a 2000.

Evaluación:

El modelo generado con mayor eficacia fue el de Random Forest, ya que es capaz de reconocer si un tweet contiene o no estrés con una precisión de 88%, lo cual es una métrica muy buena, ya que la velocidad con la que se puede evaluar un conjunto masivo de tweets con esta exactitud ayuda enormemente en una tarea que un humano tardaría mucho más tiempo, y de esta manera es posible encontrar o tratar posibles casos que requieran asistencia sin necesidad de esperar a que esto lleve a un problema mayor como lo es la depresión.

Análisis de resultados:

Para poder adentrarnos más en por qué el modelo se comporta de la manera que lo hace, hicimos uso de SHAP, una técnica de teoría de juegos utilizada para explicar los modelos. El modelo utilizado fue un Random Forest con 100 estimadores.

En este caso utilizamos un TreeExplainer de la librería shap. Para calcular estos valores se tuvo que usar solamente el 5% de los datos de entrenamiento y 10,000 features, de otro modo, el tiempo de ejecución sobrepasa la hora y media en Google Colab.

Resultados para tweets que NO tienen estrés:

Resultados para tweets que SÍ tienen estrés:

Casos de uso para el modelo generado:

Instituciones públicas, gubernamentales o privadas que estén interesadas en conocer o monitorear el estado anímico de una población, o conjunto de personas por zona geográfica, para evaluar el nivel de estrés.

Personal que labore en el área médica enfocada en la salud mental, para lograr identificar las condiciones sobre la estabilidad emocional de algún sector de la población.

Empresas privadas que puedan ofrecer servicios de consultoría para el bienestar emocional y que ofrezcan análisis o proyección de campañas de salud mental en la sociedad.

Desarrollo de Modelo en un App Web

Para alojar nuestro modelo de Machine Learning usamos el framework Flask. Este es usado por su facilidad de uso, ser muy escalable y además, está desarrollado para Python. Lo cual permite en un lenguaje realizar todo el desarrollo. Hay que tener claro que una aplicación web tiene dos partes fundamentales.

Partes de una App Web:

  1. El Front-end el cual es una página desarrollada con Html y Css. Sin ninguna parte de JavaScript ya que es una app sencilla de utilizar.
  2. El Back-end será desarrollado con Flask, donde permite crear la integración con el Front-end y además correr el modelo ya entrenado.

Desarrollo de la interfaz de usuario

En esta parte fueron utilizadas dos herramientas en línea bastante útiles que son Flask y Heroku.
Flask es un framework para desarrollo web con gran interacción con Python; Heroku es usado como un servidor para el despliegue y disponibilidad pública de la aplicación.

La aplicación se encuentra disponible en:

ANXIE-TWEET Heroku

Integrantes

  • Elías Garcés (Ing. Civil)
  • Daniela Gómez (Ing. Industrial y de Sistemas )
  • Enrique Ramos García(Lic. en Matemáticas )
  • Fernando Vizcarra Salva( Ing. Mecatrónico )
  • Jonathan Chávez(Desarrollador Web)

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio de encuentra el código usado par desarrollar esta aplicación: https://github.com/SaturdaysAI/Projects/tree/master/LATAM_remote/DataExtraction-master

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Descubriendo la calidad del sueño con técnicas de Machine Learning

Latam online. Segunda Edición. 2021

El brote de COVID-19 y las respuestas sociales adoptadas para combatir su propagación (por ejemplo, el confinamiento y el distanciamiento social) han tenido consecuencias de gran alcance, pero han brindando también una oportunidad única para examinar los efectos que el estrés crónico y la incertidumbre pueden tener en los patrones de sueño de la población en general.

Está bien documentado que el sueño puede verse afectado cuando se está bajo estrés y que los cambios en el sueño pueden tener consecuencias negativas en las emociones y el bienestar mental. Un metanálisis reciente mostró que la pandemia de COVID-19(1) ha provocado una alta prevalencia de trastornos del sueño, que afectan aproximadamente al 40 % de las personas de la población general.

Se sabe que además del estrés debido a la pandemia por COVID-19, hay otros factores que podrían alterar la resiliencia mostrada bajo estrés, por ejemplo,la falta de interacción social, la falta de ejercicio físico, el bienestar económico etc.

Este proyecto tiene como objetivo determinar qué factores pueden afectar la calidad del sueño de la población cuando están sujetas a situaciones de estrés crónico como es el caso de una pandemia. Predecir dichos factores permitiría emitir consejos útiles para la población, de tal forma que estén mejor preparados para futuras pandemias y/o situaciones de estrés crónico que permitan mitigar el impacto emocional causado por la mala calidad de sueño.

Metodología

La base de datos seleccionada para este proyecto ha sido la publicada por la Universidad de Boston2, que consiste de una serie de encuestas realizadas a 1,518 personas a través de redes sociales para evaluar el impacto de la pandemia en el bienestar emocional y mental de las personas dependiendo diversos factores como la edad, el impacto económico, la condición de minoría y o el estado de riesgo.

Una vez seleccionada la base de datos proseguimos a la limpieza y procesamiento de los datos. Después de este proceso, el número de variables de nuestra base de datos fue de 216 y el tamaño de la muestra se redujo a 839 sujetos debido a que no toda la información estaba completa.

Las variables principales incluyen información demográfica (edad, identidad de género, ingresos, etc.), información relativa a los hábitos de sueño, niveles de ansiedad, regulación emocional cognitiva, y personalidad, entre otras.

La métrica elegida para evaluar la calidad del sueño fue la variable del índice total de calidad del sueño de Pittsburgh (PSQI), que tiene una escala de 0 a 21. En dicha escala, una puntuación global de 5 o más indica una mala calidad del sueño; cuanto mayor sea la puntuación, peor será la calidad.

Análisis del dataset

Observamos la distribución de los datos

Histograma Calidad del sueño por género
Puntuación sueño
Barplot Calidad del sueño por estado civil
Barplot Calidad del sueño por ingresos

Observamos la correlación que entra la calidad de sueño con otras variables no asociadas al sueño:

  • Diferencia de cronotipo pre y post covid
  • Variable de ansiedad (No consigue dejar de preocuparse)
  • Variable de personalidad (Se considera relajado)
  • Variable de ansiedad social (Miedo a extraños post covid)

Modelos

Clasificación

En el conjunto de datos, nuestra métrica elegida para evaluar toma valores del 0 al 18 (no se han observado casos de 19 a 21). Si tomamos estos valores como si fueran clases o subconjuntos podemos aplicar un método de clasificación.

Hemos elegido aplicar el algoritmo de RandomForestClassifier con el que en un principio obtenemos valores muy bajos de precisión rondando el 0,20. A continuación, probamos a recudir las clases agrupando los valores originales de la métrica. A medida que vamos reduciendo las clases observamos que los valores de precisión van mejorando, para 6 clases el resultado mejora en torno a 0,5 y para 4 clases el resultado llega a 0,7.

Para tener una explicación de estos resultados mostramos los shap values de las predicciones:

Podemos observar que las variables que aparecen con más peso, son las que están directamente ligadas con datos de sueño (psqi_*). Las primeras de todas ellas son si la persona ha recurrido a medicinas para dormir, la percepción que declara de su calidad de sueño, y el tiempo que tarda en conciliar el sueño. Dentro de estas variables también observamos que tienen impacto datos de personalidad (big5_*) , como si se considera una persona relajada, o ansiedad (gad_*), como la capacidad de dejar las preocupaciones.

Según lo observado podemos concluir que el algoritmo está funcionando correctamente y que los datos en los que se basa para realizar las estimaciones son los esperados. Creemos que el número de observaciones con las que contamos son muy bajas para el número de clases a predecir y que aumentando los datos se podrían mejorar las predicciones.

Regresión

Para la regresión hemos elegido cuatro algoritmos distintos: RandomForest, Logistic, GradientBoosting y HistGradientBoosting.

El algoritmo que produjo el mayor coeficiente de determinación fue el de GradientBoosting, con un R2=0.9. Lo que significa que el 90% de los puntos se ajustan a la línea de regresión.

Una vez seleccionado el mejor algoritmo intentamos utilizar la optimización de los argumentos usando RandomizedSearchCV pero no obtuvimos nada mejor. Además probamos reducir el número de variables mediante el uso de PCA. Obtuvimos el número óptimo de variables y redujimos el tamaño de la base de datos a ese número, en este caso 138, pero los resultados empeoraron, la R2 disminuyó hasta 0.57.

Análisis PCA para reducir el número de variables

Por esta razón decidimos quedarnos con el resultado obtenido con el algoritmo de GradientBooster como la mejor opción para predecir la calidad del sueño.

Conclusión

Es posible predecir la calidad del sueño con un 90% de precisión. Pudimos observar que la calidad del sueño depende en mayor medida de variables relacionadas con:

  • Medicación
  • Tiempo que toma a la persona conciliar el sueño
  • Entusiasmo por llevar a cabo cosas
  • Manejo del estrés
  • Control de las preocupaciones

Esta predicción, aunque intuitiva, puede ser de utilidad para implantar medidas que puedan ayudar a la población a mejorar la calidad del sueño en situaciones de estrés crónico como la sufrida durante una pandemia.

En el futuro, este proyecto se podría mejorar aumentando el número de muestras de la base de datos actual.

Referencias

1. Jahrami, H. et al. Sleep problems during COVID-19 pandemic by population: a systematic review and meta-analysis. J Clin Sleep Med, jcsm-8930. (2020).

2. Cunningham, T.J., Fields, E.C. & Kensinger, E.A. (2021) Boston College daily sleep and well-being survey data during early phase of the COVID-19 pandemic. Sci Data 8, 110. https://www.nature.com/articles/s41597-021-00886-y

Integrantes

Presentación del proyecto: DemoDay

¡Más Inteligencia Artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Machine Learning aplicado a la Industria textil

La Paz. 2021

El proyecto comenzó con esta pregunta: ¿Será posible mejorar la toma de decisiones en al Industria textil con Machine Learning? Después de decidir que queríamos responder a la incógnita decidimos la industria y como sabemos en Bolivia y encontramos a la industria textilera que hasta el 2015, tuvo una contribución de la industria textil boliviana al Producto Interno Bruto (PIB) era del 0,9%, equivalente a 451 millones de dólares,sin embargo este sector se ve severamente afectado por varios problemas tales como:

  • Mercadería Ilegal que ingresa al País
  • Ropa usada
  • Prendas chinas

Porque vimos estos problemas y creemos que Bolivia puede mejorar su competitividad escogimos al sector de la industria textil para aplicarle Machine Learning.


DESARROLLO

Encontramos el dataset en Kaggle, este tenía las siguientes variables (están traducidas al español al lado):

date – Fecha ()

smv – valor promedio por trabajo

day – Dia (Lun-Dom)

wip – trabajos en cola

quarter – 5 periodos / mes

over time – sobrehora

department – departamento

incentive – incentivo

teamno – # de equipo

idle time – tiempos ociosos

no of workers – # de trabajadores

idleman – # de trabajadores ociosos

no of style change – # de cambios

actual productivity – productividad actual

targeted_productivity – productividad esperada

Nuestro dataset obtenido de Kaggle tenía esas características, después de ver las variables vimos que la variable SMV valor (promedio de trabajo) tenía algunos huecos,por lo que viendo su distribución decidimos rellenarla con la tendencia de la media y así ya obtuvimos todos los datos listos para trabajar.

Comenzamos con la idea de regresión pero los métodos parecían no servir o nos daban unos resultados muy bajos por lo cual tuvimos que cambiar de aproach, después se procedió a un problema de clasificación, realizamos una normalización de los datos y ya con los datos trabajados comenzamos a trabajar,acá un ejemplo de la matriz de correlación que logramos obtener una vez pasamos a la parte de clasificación de datos con datos ya normalizados.

Después se comenzó a probar modelos,el con mejores resultados predictivos fue ADAboost(insertamos imagen referencial)

Logramos un 0.82 de accuracy lo cual fue simplemente increible despues de ver como otros métodos no llegaban ni al 0.50, decidimos probar con varios modelos adicionales como Random Forest, pero la precisión era menor (no por mucho)

Al final nos quedamos con Adaboost y logramos un trabajo excelente.


CONCLUSIONES

  • Con los modelos de regresión de acuerdo al rendimiento (scores de 0.5) calculado, no se acomodan al dataset propuesto, se realizó un tratamiento al target para volver un problema de clasificación.
  • Los modelos de clasificación aplicados al dataset dieron resultados favorables en especial Adaboost con un score de 0.82
  • Los mecanismos y procesos de machine learning permitieron en el problema reutilizar el modelo como uno de clasificación.

Saturdays.AIFollow


WRITTEN BY

Jhonpoolcastro Jcs

Saturdays.AI


¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!Saturdays.AI

Detección de terrenos en renovación con Inteligencia Artificial

La Paz. 2021

En este artículo, veremos cómo llevar a cabo la detección de terrenos con Inteligencia Artificial con el objetivo identificar los terrenos (lotes) disponibles para producción (en renovación). De esta manera pretendemos mejorar los costes y la eficiencia que se asocian a su detección y explotación.

Entendemos por loteo de terrenos el proceso de división del suelo, cualquiera sea el número de predios resultantes, cuyo proyecto contempla la apertura de nuevas vías públicas, y su correspondiente urbanización. No obstante, analizaremos los terrenos de cara a su producción agrícola.

Los datos son extraídos de la base de datos geográficos de monitoreo de producción de los cañeros de la zona norte de Santa Cruz. Todo esto se maneja en un CATASTRO.

Esta información geográfica tiene relaciona información tabulada:

Entonces se puede tener una visualización del estado de los lotes, si están en producción (con cobertura) o en renovación (sin cobertura) a través de los polígonos que limitan los lotes y las imágenes satelitales.

Son estas imágenes en diferentes épocas del año las que permiten analizar visualmente si los lotes están en renovación o no.


Descripción del problema:

La determinación de si un lote está o no en renovación es importante ya que es una variable a la hora de calcular la producción y rendimiento de las propiedades de cada cañero, y para ello se presentan los siguientes inconvenientes:

  • Las inspecciones de campo y a través de imágenes satelitales son morosas.
  • Susceptible a errores.
  • Demasiado tiempo invertido.


Objetivo:

Determinar si un lote de cultivo de caña está en renovación a través del cambio de cobertura a partir de los datos estadísticos de NDVI de los últimos 12 meses con Machine Learning.


Propuesta de solución.

Las imágenes satelitales pueden ser procesadas para obtener ciertos índices. El índice de interés para observar si un lote está en renovación se llama NDVI (Normalized Difference Vegetation Index):

Se puede observar los lotes con cobertura en color verde, y los que están sin cobertura en rojo, esto de los colores es solo simbología. Lo que en verdad se tiene con el NDVI es una matriz de píxeles:

Cada pixel tiene valores entre -1 y 1; siendo -1 suelos completamente descubiertos, y 1 suelos con cobertura vegetal.

Entonces, se puede obtener la estadística descriptiva de cada lote, y a través de su media y desviación estándar determinar si un lote está en renovación o no.

Como se puede apreciar, lotes con cobertura tiene una media cercana a 1 y una desviación estándar baja, y los que están sin cobertura una media cercana a 0 y también una desviación estándar baja, la desviación estándar es importante ya que determina que las uniforme son los valores de los píxeles en cada lote.


Ingeniería de características.

  • Se identificó como target el campo Variedad el cual se almacena la variedad sembrada en ese lote, pero si el lote está en renovación, tiene la etiqueta “Renovación”, también cambiamos de nombre de la columna a Renovación.
  • Convertimos el campo Renovación de categórico a booleano.
  • Unimos los 13 dataset (1 de catastro y 12 de los valores estadísticos del último año) en uno solo dataset para mejor uso.


Visualización de Datos

  • Cantidad de registros por Renovación.
  • Cantidad de registros por gestión.
  • Cantidad de registros por hectareaje.
  • Matriz de correlación.
  • Visualización del balanceo del target.


Reducción de dimensiones a través de PCA.

Se realizó la reducción de dimensiones a través de PCA a dos componentes principales, y se puede apreciar una diferencia entre los registros:


Entrenamiento de modelos

Se probaron tres tipos de modelos, también se implementó Cross Validation. Los resultados fueron los siguientes:

  • Regresión Logística
  • Random Forest
  • SVM


Elección del mejor modelo

En base a los resultados obtenidos, elegiremos ahora el modelo de Inteligencia Artificial más adecuado para la detección de terrenos en renovación:

Se observa que los 3 modelos seleccionados se aproximan a la misma probabilidad 0.93, sin embargo, SVM tiene un mejor score.

También se decidió aplicar la Curva de ROC, y dio el dio el siguiente resultando:

En este caso Random Forest es quien presenta mayor área bajo la curva, por lo tanto, SVM y Random Forest son los mejores modelos a considerar para la clasificación de lotes en renovación.

Autores del proyecto.

  • Bismark Socompi.
  • Ruth Paola Vedia
  • Cristian Vargas

Saturdays.AI


WRITTEN BY

Bismark Socompi Rodriguez

Saturdays.AI

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Machine Learning aplicado a la compactación de suelo.

En este artículo, utilizaremos técnicas de Machine Learning para optimizar la compactación del suelo.

El suelo es un material compuesto por una parte sólida, líquida y gaseosa, que se formó durante cientos de millones de años de meteorización y sedimentación. Entendemos por compactación el eliminar la mayor cantidad de masa gaseosa (comúnmente aire) del suelo mediante carga.

La curva de compactación consiste en una curva que se construye después de marcar los puntos pares de densidad seca y la humedad de la muestra. Con un mínimo de 5 puntos se traza a mano una curva que pueda correlacionar todos estos puntos y se obtienen la densidad seca máxima y la humedad óptima a la que se puede compactar este suelo.

Estos parámetros son linealmente independientes y no existe una relación entre el ensayo de compactación y la clasificación de suelos, por lo que se realizan dos ensayos diferentes para la obtención del mismo.


Descripción del problema

Para cada kilómetro de carretera se requieren 5 pozos de ensayo de los cuales es requisito presentar dos ensayos:

  • Clasificación de suelos
  • Compactación

En la práctica, debido a los recursos económicos y la logística que representa solo se realizan 5 ensayos de clasificación y 2 de compactación y los resultados se interpolan.


Objetivo

Determinar usando técnicas de Machine Learning una correlación entre la clasificación de suelos y la compactación de suelos, refiriéndose al valor de densidad seca máxima y humedad óptima, para calcular la humedad a la que se compactará un determinado tramo de carretera.


Selección del modelo

Debido a que se conoce el resultado y el problema es numérico, los modelos que se usaron fueron:

  • Regresión lineal
  • Regresión multi-lineal
  • Regresión polinómica


Técnicas implementadas


Reducción de dimensiones

Se redujeron todas las columnas que no aportan una información relevante: ‘Pozo’, ‘Lado’, ‘Prf o (m)’, ‘Prf f (m)’, ‘% Hum’, ‘ST >3’, ‘3’, ‘AASTHO’, ‘#’, ‘SUCS’, ‘100%’, ‘97%’, ‘95%’, ‘100%.1’, ‘97%.1’, ‘95%.1’


Valores faltantes

En la columna de LL se encontró que faltaban 30 datos, se utilizó un histograma y se determinó que la curva normal que describe a sus datos estaba desfasada del medio, por lo que se rellenó los datos faltantes con la mediana, que es 32.2


Gráficas

Se realizaron todas las gráficas necesarias para entender e interpretar el problema.

Relación lineal (con sklearn)

Relación polinómica de 2do grado (con numpy)

Relación polinómica de 3er grado (con numpy)

Relación multi-lineal (con sklearn)

Relación multi-lineal (con sns) donde se relacionan los 14 parámetros entre sí y su relación con la Humedad óptima.


Evaluación del modelo


D max vs H opt

Regresión lineal:

Regresión polinómica de 2do grado:

Regresión polinómica de 3er grado:


Feature vs H opt

Regresión lineal:


Análisis de resultados


D max vs H opt

Se puede observar que es la regresión polinómica la que tiene un coeficiente de correlación más cercano a 1 y en gráfica la que mejor se ajusta por lo que será la regresión adoptada


Feature vs H opt

Se puede observar un valor de coeficiente de correlación cercano a 1 y en las gráficas de sns la gran mayoría son relaciones lineales por lo que se acepta el modelo multi-lineal conseguido.


Conclusión

Se determinó una correlación entre la clasificación de suelos y la compactación de suelos, para calcular la humedad a la que se compactará un determinado tramo de carretera:

H opt = 0.117*(LL) + 0.0212*(LP) — 0.007*(2) + 0.010*(1 ½) — 0.004*(1) — 0.001*(¾) + 0.017*(⅜) — 0.001*(no 4) — 0.052*(no 10) +
+ 0.054*(no 40) + 0.036*(no 200) — 0.043*(% Grava) + 0.007*(% Arena) + 0.036*(% Finos) + 3.779

D max = 4.110*10^(-4)*(H opt)² — 4.256*10^(-2)*(H opt) + 2.394

WRITTEN BY

Mauricio Ramirez Salamanca

Follow

Saturdays.AI

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!