Herramienta para el control del TIE (Trastorno de Inestabilidad Emocional)

La Paz. Deep Learning. 2021

INTRODUCCIÓN

Uno de los problemas que la mayoría de los jóvenes padece hoy en día son los distintos trastornos mentales que existen, dentro de estos se encuentra el Trastorno de Inestabilidad Emocional (TIE), el cual afecta de manera contundente la vida de las personas que lo padecen.

El TIE se define como un conjunto de síntomas que aparecen en la etapa de la adolescencia, produciendo desequilibrios de las emociones y los sentimientos en estos. Es muy común que el adolescente padezca inestabilidad emocional debido a las dificultades que lo rodean, cuando en realidad es exactamente lo opuesto, este pasa de un estado de indiferencia a uno de afectación emocional sin motivo aparente, perdiendo así control sobre el mismo.

Este problema llega a afectar hasta a un 6% de los adolescentes, una cifra que aumenta si existen agravantes de la situación familiar como, por ejemplo, problemas económicos.

Actualmente se ha demostrado que la terapia icónica da buenos resultados en este trastorno. Este método se basa en utilizar imágenes (o ciertos iconos para cada área tratada). El paciente lo asocia al área que se está trabajando durante la sesión. Se le ayuda a evocar mediante las imágenes un razonamiento concreto y así se pueden anticipar al impulso emocional, por lo que se propuso el uso de Deep Learning como herramienta para esta terapia y para el seguimiento de la persona que padece de este trastorno.

DESCRIPCIÓN DEL PROBLEMA

Debido a que la mayor característica del TIE es el cambio repentino de emociones existen diferentes terapias para tratar este trastorno, pero una de la más recomendadas es la terapia icónica que fue explicada anteriormente.

Al momento de realizar la terapia icónica, el doctor debe estar atento a los diferentes cambios de emoción que presente el paciente, pero en el transcurso en el que va mostrando las imágenes o registrando las emociones que presenta el paciente, no detecta en tiempo real, qué tan rápido fue el cambio de emoción que presentó el paciente.Debido a este problema, el especialista en este trastorno puede perder valiosa información para la terapia y la recuperación de este paciente.

OBJETIVO

Realizar un código el cual será usado como herramienta para controlar y evaluar más a fondo el progreso del paciente, más específicamente para la terapia icónica, usando una cámara que monitoree al paciente, guardando en tiempo real en un archivo, las diferentes emociones que presentó al mostrarle las imágenes y/o iconos, de tal manera que ayude a los psicólogos y/o psiquiatras a la evaluación de su trastorno.

DATASET

Se utilizó un dataset existente y de acceso libre, el cual se encontraba en la página web llamada kaggle, el cual fue creado por Jonathan Oheix. En este archivo se clasifican expresiones faciales de 35900 imágenes. Cada imagen tiene un tamaño de 48×48 píxeles en escala de grises y tiene el formato en el que solo se ve su rostro con la expresión facial correspondiente. Este dataset cuenta con dos carpetas (train y validation) las cuales tienen 7 sentimientos: enojo, disgusto, miedo, feliz,neutral,triste y sorprendido

SELECCIÓN DEL/LOS MODELOS

Debido a que existen diversos modelos en el campo del Deep Learning, se optó por el modelo de ResNet50, esto debido a que luego de un análisis de modelos en el que se tomó en cuenta el tiempo que llevaba entrenarlos, su optimización, entre otros aspectos, fue el que tuvo mejores resultados entre todas las variantes que se tomaron en cuenta.

El ResNet50 se utilizó debido a que es una red neuronal convolucional que posee 50 capas de profundidad. Esta puede cargar una versión previamente entrenada de la red, en el caso de este proyecto se utilizó la database mencionada anteriormente.

Otros de los modelos implementados en el proyecto fueron:

Keras: Se uso esta biblioteca de código abierto escrita en Python, ya que se basa principalmente en facilitar un proceso de experimentación rápida, además como es una interfaz de uso intuitivo , nos permitio acceder a frameworks de aprendizaje automático, en este caso se hizo uso de TensorFlow.

Además para completar todos los aspectos del proyecto se utilizó OpenCv y Numpy

EVALUACIÓN DE MODELOS

Se hizo pruebas con los siguientes modelos:

-AlexNet: Esta red es de las más populares, pero tiene pocas capas e igualmente se obtuvo una precisión suficiente.

-Face Recognizer: Se llegó a entrar un modelo con este método pero al momento de querer levantar el modelo para evaluarlo a tiempo real este consumía demasiados recursos de la computadora, por lo que no era apropiado si se quería usar en dispositivos más simples.

-EfficientNet: Esta red se trató de entrenar con tres épocas pero no se logró debido al largo periodo de entrenamiento que requería.

-ResNet2: Esta red presentó dificultades al comienzo de su entrenamiento, siendo el caso que no pasó de la etapa número uno, habiendo transcurrido 3 horas.

-ResNet50: Esta red fue la que usamos en el proyecto ya que pudimos entrenar 100 épocas utilizando la GPU de colaboratory y el tiempo utilizado fue de 1hora 45 minutos.

ANÁLISIS DE RESULTADOS

En la gráfica que se muestra corresponde al accuracy que se logró luego de haberlo entrenado con 100 etapas, debido a esto y a la ResNet, se puedo lograr estos resultados

A diferencia de la anterior gráfica, esta corresponde al loss del modelo

CONCLUSIÓN Y RECOMENDACIONES

Se recomienda verificar el dataset correctamente antes de ingresar a la red, ya que muchos de ellos vienen con imágenes que no corresponden. Igualmente en la medida de posible se recomienda entrenar con una GPU física, si no es el caso se recomienda utilizar la GPU de colaboratory. Si es el caso utilizar un dataset con más imágenes, ya que esto elevará la precisión del entrenamiento.

Con el modelo escogido gracias a la evaluación de modelos se pudo elegir el más eficiente para realizar el código, además de lograr el objetivo de detectar emociones para que sirvan de herramienta a psiquiatras y psicólogos que tratan con pacientes con TIE.

Presentación del proyecto: DemoDay

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos para el bien (#ai4good). Los talleres que realizamos forman parte del programa AI 4 Schools para que cualquier persona “aprenda haciendo” IA sin importar su especialidad o nivel de partida.

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en este link o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Detección de Discurso de Odio

Detección de Discurso de Odio en Redes Sociales mediante Transformers y Natural Language Processing

Detección de Discurso de Odio

La Paz. Deep Learning. 2021

De acuerdo con las Naciones Unidas, el discurso de odio se define como “Todas las formas de expresión que comparten, alienten, justifiquen o promueven la humillación, el menosprecio, la estigmatización o amenaza contra una persona o grupo como las mujeres y las niñas”.

Actualmente, estamos experimentando una oleada de discurso de odio en varios ámbitos y hacia diferentes minorías. Por ejemplo, después de la final de la Eurocopa 2020 se desató una ola de ataques racistas en redes sociales contra jugadores de la sección inglesa después de haber fallado penales. En particular, se destaca el uso de Internet para la propagación de este tipo de agresiones gracias a que éste proporciona anonimidad, distanciamiento, ausencia de normativa de los contenidos, entre otros.

Las redes sociales y otras plataformas en Internet cuentan con algunos mecanismos automáticos para detectar discursos de odio. Estas herramientas han adquirido mayor relevancia ante diversos sucesos que han disparado la proliferación de contenido con discurso de odio. La siguiente gráfica muestra cómo el discurso de odio aumentó durante el año de pandemia, según los mensajes de odio eliminados por Facebook:

Figura 1:Número de publicaciones con discurso de odio eliminadas en Twitter. Fuente: https://es.statista.com/grafico/21710/publicaciones-de-discurso-del-odio-eliminadas-por-facebook/

Sin embargo, estas herramientas no se encuentran disponibles para cualquier ciudadano que quisiera analizar contenidos para determinar la existencia de discurso de odio. Es por esta razón que decidimos construir un método que sirviera como herramienta o base para la construcción de tecnologías que pudieran ayudar en la detección de este tipo de comentarios y así poder detener su propagación.

En este artículo, describimos cómo aplicamos métodos de Deep Learning y Procesamiento de Lenguaje Natural (NLP, por sus siglas en inglés) para la detección de discurso de odio en comentarios de Twitter en idioma español. Este trabajo es una continuación del proyecto Violentómetro Online. En dicho proyecto tuvimos un primer acercamiento al problema de detección de discurso de odio contra mujeres mediante el uso de técnicas clásicas de Machine Learning.

En esta sección, describimos la metodología (Transformers y Data Augmentation), así como los datos que utilizamos durante la realización de este proyecto. También detallamos los parámetros del modelo y las técnicas de interpretación que empleamos para entender sus predicciones.

Conjunto de Datos

MEX-A3T: Fake News and Aggressiveness Analysis es un evento organizado por la comunidad de NLP en México para detectar noticias falsas y textos con discurso de odio. Los organizadores compartieron con el equipo el conjunto de datos de entrenamiento que consiste en Tweets en el idioma español. El conjunto tiene las siguientes características:

  • 7 mil 332 registros
  • 2 columnas:
  • Text: Texto del Tweet (no contiene handlers).
  • Category:
  • 1: Contiene odio en general (2110 registros)
  • 0: No contiene odio (5222 registros)
Figura 2: Distribución del conjunto de datos MEX-A3T

Data Augmentation

La distribución del conjunto de datos (Figura 2) muestra que se tienen menos registros de la categoría 1 (discurso de odio). Este problema afecta en particular a los modelos de Deep Learning por lo que fue necesario aplicar técnicas que nos permitieran generar nuevos ejemplos (sintéticos) para tener una cantidad de registros cercana a la de la categoría 2.

Las operaciones de data augmentation que se aplicaron al 50% de mensajes de discurso de odio del dataset para obtener más ejemplos son las siguientes:

  • Synonym Replacement: Reemplazo de algunas palabras por su sinónimo.
  • Random Deletion: Borrado de algunas palabras de manera aleatoria con probabilidad p.
  • Random Swap: Intercambio de palabras de manera aleatoria.
  • Random Insertion: Inserción de un sinónimo en una posición aleatoria n.

Modelo

Para crear el modelo utilizamos la librería de Transformers de Hugging Face (Figura 4) que contiene modelos de Deep Learning pre entrenados para varios propósitos como clasificación de texto, extracción de información, traducción, entre otros. En particular utilizamos el modelo BETO, el cual es un modelo con la arquitectura BERT entrenado con un corpus en español, para obtener la representación vectorial del texto (embeddings). Además se utilizaron dos capas adicionales: multi-layer bi-directional GRU y otra lineal que obtiene las predicciones. Es posible utilizar otras arquitecturas en lugar de multi-layer bi-directional GRU, pero para este proyecto decidimos utilizar ésta ya que es más eficiente computacionalmente que LSTM.

Nota: El código completo se puede consultar en el repositorio del proyecto violentometro-online.

Mejores Parámetros

Probamos diferentes variaciones de BETO para obtener los mejores parámetros de entrenamiento para el modelo final. Evaluamos cada modelo utilizando la métrica F1 ya que ésta es comúnmente utilizada en problemas de clasificación de textos además de tomar en cuenta las siguientes variaciones:

  • Model: Variación de BETO (cased y uncased).
  • Epochs: Número de iteraciones en el entrenamiento.
  • Preprocessed: Preprocesamiento del texto que incluye operaciones como remover emojis, dígitos, stopwords, entre otros.
  • Sample frac: Proporción de ejemplos sintéticos en el conjunto de datos.

La siguiente tabla muestra los modelos con los que obtuvimos los mejores resultados:

Tabla 1: Resultados de los mejores parámetros del modelo

Como podemos observar, el mejor modelo (BETO-Uncased) no requirió un preprocesamiento del texto además de que fue necesario generar una importante cantidad de datos sintéticos. Dicho modelo obtuvo el mejor valor (0.842) de la métrica F1. Queremos resaltar que dicho resultado es mucho mejor al que habíamos obtenido anteriormente utilizando el modelo de Random Forest..

Explicación de las Predicciones

Utilizamos la API Lime para obtener una explicación detallada de las predicciones del modelo. Lime es capaz de explicar cualquier modelo de clasificación que haga predicciones de una o más clases. Para poder utilizar Lime es necesario crear una función que regrese un arreglo de Numpy con las probabilidades de cada una de las clases. Lime muestra los pesos de cada una de las palabras del texto en la predicción. La Figura 4 contiene la explicación de la predicción de un texto:

Figura 4: Ejemplo de explicación de la predicción de un texto con discurso de odio

Se puede observar que en la predicción del modelo, se le dio más peso a la palabra que aparece primero en la lista además de la representación en texto del emoji.

Aplicación Web

Desarrollamos el prototipo de una aplicación web con el modelo que obtuvo los mejores resultados. Dicha aplicación web se puede consultar aquí. El prototipo fue desarrollado con el framework Streamlit y se utilizó GitHub Actions para desplegarlo (integración continua) en AWS. La siguiente imágen muestra el prototipo:

Figura 5: Aplicación Web Violentómetro Online

Los usuarios pueden introducir cualquier texto en la aplicación. Cuando los usuarios pulsan las teclas Ctrl+Enter, la aplicación (modelo) devuelve como resultado las siguientes categorías:

  • 1 = Contiene discurso de odio
  • 0 = No contiene discurso de odio

El objetivo de nuestro proyecto es desarrollar un método efectivo para detectar automáticamente la violencia verbal en idioma español que ocurre en discursos en línea. Con este proyecto pudimos crear un método que tiene una efectividad bastante razonable utilizando técnicas avanzadas como Deep Learning y data augmentation, además de estar construido con herramientas gratuitas y de código abierto. También se utilizó una API que nos permitió entender las predicciones del modelo.

Entre los siguientes pasos de nuestro proyecto podemos destacar lo siguiente:

  • Utilizar otras variantes del idioma español.
  • Recolectar más ejemplos de discurso de odio que se encuentren dirigidos a diferentes minorías (mujeres, religiones, opiniones, entre otros) para obtener un modelo más robusto.
  • Incorporar un mecanismo de feedback para los usuarios de la aplicación web.

Queremos agradecer a María José Díaz-Torres, Paulina Alejandra Morán-Méndez, Luis Villasenor-Pineda, Manuel Montes-y-Gómez, Juan Aguilera, Luis Meneses-Lerín, autores del Dataset MEX-A3T y del artículo Automatic Detection of Offensive Language in Social Media: Defining Linguistic Criteria to build a Mexican Spanish Dataset. También queremos agradecer al equipo que hizo posible Saturdays.AI La Paz por todo su trabajo y dedicación en la organización del programa.

Integrantes

Presentación del proyecto: DemoDay

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos para el bien (#ai4good). Los talleres que realizamos forman parte del programa AI 4 Schools para que cualquier persona “aprenda haciendo” IA sin importar su especialidad o nivel de partida.

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en este link o visítanos en nuestra web www.saturdays.ai ¡te esperamos!