Digitalización de fotografías y Restauración de fotografías con Inteligencia Artificial

La Paz. Deep Learning. 2021

La Paz 2021. Las técnicas de Inteligencia Artificial tienen muchas aplicaciones actuales en el campo de las fotografías. Una de ellas tiene que ver con la manipulación de imágenes, campo en el cual se inscribe nuestro proyecto.

En particular, la restauración de imágenes (image restoration) es el proceso de recuperar una imagen a partir de una versión degradada. Image restoration es un caso de estudio que normalmente es tratado con procesamiento de imágenes. Se parte de la idea de que la imagen ha pasado a través de una función de degradación y se le ha añadido ruido; la restauración entonces consistirá en revertir el proceso y recuperar la imagen original.

El propósito de este proceso es “compensar” o “deshacer” aquellos defectos que generaron la degradación de la imagen, obteniendo un estimado de la imagen original.

La degradación puede provenir de diferentes fuentes, como la difuminación de movimiento (motion blur), ruido, desenfoque de la cámara o una combinación de todas éstas. También hablaremos de degradación al referirnos a aquellas fotografías impresas o negativos que sufrieron cualquier tipo de desgaste debido al envejecimiento del papel, polvo, manchas, etc.

De manera tradicional, una vez identificado el tipo de degradación, es posible procesar la imagen con un tratamiento de procesamiento de imágenes. Existen diferentes estudios y especializaciones con respecto a estos procesos, especialmente para revertir el ruido agregado a la función de degradación. Cada caso es único, por lo cual el tiempo de procesamiento puede llegar a ser muy largo. Al mismo tiempo, podemos encontrar estudios de fotografía que ofrecen el servicio de restauración aplicando técnicas de edición digital, lo cual resulta costoso.

Ejemplo de restauración de imágenes

Por otro lado, tenemos los films negativos fotográficos producidos por las cámaras analógicas que son preservados por varios tipos de usuarios, desde historiadores y bibliotecarios hasta quienes simplemente desean conservar recuerdos familiares. Estas películas normalmente deben pasar por un proceso químico (revelado) para la obtención de la fotografía física que describe la escena que fue capturada con la cámara analógica.

Revelado digital de negativo

Existen técnicas de manipulación de la imagen digital de un negativo para obtener la imagen que correspondería a la revelada en el proceso tradicional. Estas técnicas siguen una secuencia de pasos que consisten en ajustar ciertos parámetros de la imagen que van más allá de la inversión de colores, algo que también se debe hacer imagen por imagen.


DESCRIPCIÓN DEL PROBLEMA y OBJETIVO

La selección de la técnica de procesamiento de imágenes que debe aplicarse a la imagen degradada proviene de una apreciación visual y resulta subjetiva. Muchas veces debemos aplicar varias técnicas en cascada para obtener un resultado óptimo. Este proceso consume tiempo, es específico a cada caso que se presente y en la mayoría de los casos no se puede paralelizar.

¿Y si pudiéramos utilizar la inteligencia artificial para crear un solo modelo que sea capaz de restaurar la imagen degradada sin necesidad de categorizar el tipo de degradación, cómo también realizar el revelado de las fotografías a partir de los negativos en film?

Éste es precisamente nuestro objetivo. Utilizaremos técnicas de Inteligencia Artificial para construir un modelo de restauración de fotografías que podrá recuperar la imagen original a partir de las degradaciones descritas y/o a partir de los negativos fotográficos. Para hacer el desafío más interesante incluiremos además imágenes en formato blanco y negro que deberán ser coloreadas; y también imágenes con regiones suprimidas, es decir taparemos regiones de la escena simulando manchas o rasguños que pudieran haber eliminado por completo estas regiones. Por más que existen modelos que hacen ciertas funciones que describimos, una de las dificultades será el de combinar todas estas restauraciones (colorización, revelado, restauración e incluso generación creativa) en un sólo modelo.


SELECCIÓN DE LOS MODELOS

El proyecto presentado está basado en varias librerías de Fast.ai, que proporcionan herramientas de manipulación de fotografías mediante inteligencia artificial, de datasets para entrenamientos e incluso de modelos pre entrenados que son un buen punto de partida. La arquitectura general escogida es la de trabajar con una GAN (Generative Adversarial Network), que es apropiada para resolver nuestra problemática.

La estructura general utilizada consiste en un generador de imágenes, que intenta crear imágenes con la mejor calidad posible, ya sea en el color, la resolución, la textura… Por otra parte se entrena un discriminador que debe distinguir entre las imágenes reales dadas cómo input y las imágenes generadas por el generador. Finalmente se hace un tercer entrenamiento donde se combinan los dos modelos anteriores, lo que crea la GAN: en este proceso ambos modelos compiten y obligan a mejorarse el uno al otro.

Nuestro modelo generador ya viene pre entrenado y consta de dos partes. La primera son las convoluciones que llevan una imagen de input hacia dimensiones cada vez más pequeñas, y la otra parte es cuando se hace el camino inverso para recuperar una nueva imagen de las mismas dimensiones que la que se tiene como input. La arquitectura total es UNET, que tiene como particularidad que cierta información del proceso de reducción de la imagen se le envía directamente a su contraparte (cuando las dimensiones son equivalentes). Este proceso se puede ver en la siguiente imagen.

Unet

De igual manera, las diferentes operaciones y convoluciones utilizadas están basadas en una arquitectura CNN (Convolutional Neural Network) Resnet34 (34 capas de profundidad), que utiliza bloques residuales o de identidad durante las operaciones de convolución. Cuando cargamos este modelo, se puede entrenar solo la parte de la derecha (aproximadamente 20 millones de parámetros) utilizando la opción freeze(), o se puede entrenar el modelo entero (aprox. 40 millones de parámetros) con la opción unfreeze(). En este momento del proceso, y viendo que se utiliza una loss function de Mean Squared Error (MSELossFlat()), el generador solo intenta acercarse lo más posible a los valores de los píxeles de la imagen original. Sin embargo, esto no es suficiente para capturar, por ejemplo, el entorno de los píxeles, en específico ciertas texturas que son muy importantes para obtener una imagen correcta y de buena resolución. Es por eso que se utiliza el generador junto al discriminador en una estructura GAN.

El discriminador (también llamado critic) utiliza una loss function de cross-entropy con logits permitiendo una clasificación binaria (BCEWithLogitsLoss()), que está bien adaptada a su objetivo. Antes de entrenar la GAN, el discriminador se puede entrenar entre imágenes creadas por el generador y los input reales. Sin embargo, lo que más nos interesa es el entrenamiento de la GAN.

En esta etapa, los dos modelos generador y discriminador se entrenan juntos. La idea es utilizar un switcher que decidirá si es momento de entrenar el generador para mejorar las imágenes creadas y confundir al discriminador, o al contrario entrenar el discriminador cuando un cierto umbral de imágenes están siendo clasificadas como reales cuando en realidad son creadas por el generador.

Este proceso se lo puede realizar iterativamente cambiando el tamaño de las imágenes con las cuales va trabajando el modelo, yendo de dimensiones más pequeñas a las más grandes. De esta manera, el modelo va mejorando progresivamente. Esta técnica se utiliza por ejemplo para mejorar la resolución de las imágenes que se le da al modelo de Inteligencia Artificial y mejorar así las fotografías.


PREPARACIÓN Y CONSTRUCCIÓN DEL DATA SET

Es bien sabido que uno de los aspectos más importantes en la construcción de cualquier modelo inteligente son los datos. Es así que pusimos énfasis en la obtención, preparación y construcción de un dataset que nos pudiera proporcionar todo el espectro de degradaciones que requerimos que nuestro modelo sea capaz de reconstruir y que contemos con la cantidad y variedad necesaria.

Trabajamos con el dataset VOC2012 y ColorizationDataSet como datos iniciales (imágenes variadas a color y sin defectos). Decidimos utilizar 9895 imágenes en total. A una mitad se le aplicó un proceso de negativización artificial gracias a un preprocesamiento de imagenes y para la otra mitad se tomó en cuenta las imágenes en blanco y negro. A todas éstas imágenes se le aplicó un segundo procesamiento de imágenes dónde a un 65% se le aplicó algún tipo de degradación como ser compresión jpeg, ruido sal y pimienta, difuminado (blur), entre otros; y a un 25% se aplicó una degradación más importante cómo son unos huecos o manchas en varios sectores de las imágenes. A continuación podemos ver varios ejemplos de este tratamiento.

Imágenes degradadas generadas artificialmente

Para el entrenamiento del modelo, se dividió el dataset en un train set de 8906 imágenes y un test set de 989 imágenes.


EVALUACIÓN DE MODELOS

Para entrenar nuestro modelo, utilizamos la GPU proporcionada por Google Colab. Antes del entrenamiento de la GAN, se puede entrenar el generador y el discriminador con sus respectivas loss function detalladas en el punto 4.

Para el generador, vemos que existe una cierta mejora al avanzar el número de épocas, tanto para el train set como para el test set. Hay que tener en cuenta que esto es sólo una parte del entrenamiento del generado,que en realidad se hará durante el entrenamiento de la GAN.

Curva de Loss function en uno de los entrenamientos del Generador

Para el discriminador, de igual manera se lo puede entrenar solo, y en esta etapa podemos llegar a un accuracy de hasta 95 %, lo que demuestra que antes de entrenar la GAN, le es muy fácil distinguir las imágenes reales de aquellas producidas por el generador.

Durante el entrenamiento de la GAN, se utilizan otras loss function un tanto modificadas tanto para el generador como discriminador. Sin embargo, para evaluar el modelo final, se necesita hacer una verificación visual ya que las loss function de ambos no nos proporcionan información relevante porque ambas funciones irán mejorando y empeorando en función de qué modelo se esté entrenando.


ANÁLISIS DE RESULTADOS

Para el entrenamiento del modelo de Inteligencia Artificial especializado en las fotografías se preparó un conjunto de datos de 9895 imágenes de negativos fotográficos (artificiales) y 9895 imágenes a color, cada uno de los negativos tiene una imagen a color relacionada..

El conjunto de datos se dividió en 2 grupos uno de entrenamiento y otro de validación, bajo el siguiente detalle:

– Train (8906 imágenes)

– Valid (989 imágenes)

Para el entrenamiento se consideraron los siguientes grupos de imágenes:

a) Imágenes en blanco y negro.

b) Imágenes sin degradación.

c) Imágenes con ruido gaussiano.

d) Imágenes con degradación y supresión de regiones


Resultados Train:

– Imágenes en blanco y negro

Imagen: image2669.jpg

De izquierda a derecha: Imagen Original, Imagen degradada blanco y negro, predicción en el entrenamiento


– Imágenes en negativo sin degradación

Imagen: 2007_000039.jpg

De izquierda a derecha: Imagen Original, Imagen en negativo, predicción en el entrenamiento

Podemos ver que el modelo hace un buen trabajo al colorear ciertas imágenes negativas, encontrando el color correcto en la mayoría de los objetos de la imagen.

– Imágenes en negativo con ruido gaussiano.

Imagen: 2007_003118.jpg

De izquierda a derecha: Imagen Original, Imagen en negativo con ruido, predicción en el entrenamiento

La restauración de ruido hacia una mejor resolución no está completamente realizada, incluso para el train set. Podemos concluir que hace falta más tiempo de entrenamiento para continuar con el proceso.

– Imágenes en negativo con regiones suprimidas

Imagen: 2007_000033.jpg

De izquierda a derecha: Imagen Original, Imagen en negativo con supresión de regiones, predicción en el entrenamiento

Imagen: 2007_000027.jpg

De izquierda a derecha: Imagen Original, Imagen en negativo con supresión de regiones, predicción en el entrenamiento

Para las imágenes degradadas con partes enteras faltantes, el modelo reconoce el color que le debe dar a la zona oscura. Por el momento, la resolución es mala, pero con más entrenamiento, esto puede ir mejorando.


Resultados Test Set:

– Imágenes en blanco y negro.

Imagen: image0476.jpg

De izquierda a derecha: Imagen Original, Imagen degradada blanco y negro, predicción en el testing


– Imágenes en negativo sin degradación.

Imagen: image1027.jpg

De izquierda a derecha: Imagen Original, Imagen en negativo, predicción en el testing


– Imágenes con ruido gaussiano.

Imagen: image0850.jpg

De izquierda a derecha: Imagen Original, Imagen con ruido, predicción en el testing


– Imágenes con Degradación

Imagen: image4988.jpg

De izquierda a derecha: Imagen Original, Imagen en negativo con supresión de regiones, predicción en el entrenamiento


Resultados de imágenes que no forman parte del dataset:

A continuación presentamos resultados de predicción del modelo en imágenes completamente nuevas que no se utilizaron durante el entrenamiento. Podemos observar que dependiendo la imagen en blanco y negro, la colorización se hace de manera aceptable en algunas pero casi nada en otras. De igual manera en la segunda imagen se observa que la imagen del resultado ha mejorado la calidad de la imagen en cuanto al ruido que presenta la original. En cuanto a la imágenes en negativo, el modelo hace un buen trabajo en detectar los objetos de la imagen y colorearlos acorde a lo detectado.


CONCLUSIÓN

Este proyecto de Deep Learning nos permitió familiarizarnos con ciertas técnicas de manipulación de imágenes, código en Python, librerías especializadas en Deep Learning así como técnicas de entrenamientos de modelos en ciencia de datos, usando la Inteligencia Artificial aplicándola a las fotografías. Los resultados son aceptables considerando las limitaciones en tiempo de entrenamiento así como en GPU que se tuvieron. Vimos que el modelo puede trabajar tanto con negativos fotográficos como con fotografías antiguas en blanco y negro que pudieran presentar degradaciones leves o fuertes. Sin embargo, queda mucho margen de mejora como por ejemplo vimos que algunas restauraciones de negativos tienen un tinte azul de fondo, probablemente debido al hecho de haber utilizado negativos solo creados artificialmente y no “reales”. Estos negativos pueden presentar diferentes calidades químicas, de material… que pueden variar por modelo o marca. De igual manera es probable que utilizar imágenes degradadas reales aumente el poder del modelo.


BIBLIOGRAFÍA

Saturdays.AI


Silvana Dávila

Saturdays.AI

Presentación del proyecto: DemoDay

¡Más Inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

WomanLife: Deep Learning for the detection and classification of breast cancer

La Paz. Deep Learning. 2021

Today, thanks to deep learning algorithms of artificial intelligence, we have the possibility to automate the classification of images, so this tool can help medical personnel in the classification and early detection of breast cancer. In this way, women suffering from this disease could be diagnosed automatically, in time to start treatment.

Breast cancer is the most common type of cancer in women and is also one of the main causes of death according to the WHO (WHO, 2020). Early detection is the single most important factor in lowering cancer treatment costs and mortality. To make it possible it is necessary to have medical ultrasound images and specialists who can explain them. However, the lack of these creates a gap in access to early treatment in countries with little or not enough access to specialized diagnostic services and whose population receives low and middle income.


Description of the problem

Our project consists of the detection and classification of breast cancer in women between 25 and 75 years old. This is possible from the development of an deep learning model trained with images obtained using ultrasound scanners that result in the segmentation of the type of cancer that could be suffered.


Objective

Allow women suffering from breast cancer to be automatically diagnosed using a deep learning model so that they can start treatment early and safely, reducing costs and the mortality rate. To meet this objective, we have proposed a tool that uses artificial intelligence to provide greater agility to the process through self-diagnosis with ultrasound images.


Model selection

The breast cancer detection and classification project works with ultrasound images of three types, labeled as benignmalignant and neutral, so the deep learning model selected for its execution is convolutional networks with TensorFlow Keras.


Datasets

The dataset was collected from Baheya Hospital for Early Detection and Treatment of Women’s Cancer, Cairo, Egypt. It contains 780 breast ultrasound images, in women between 25 and 75 years old (133 normal, 437 benign and 210 malignant) with an average image size of 500 x 500 pixels, some of which are seen below,

Fig. 1. Samples of images

The images from the original dataset contain mask images that do not provide meaningful information to the model we developed, for this reason Shell statements were used to remove them from the dataset we are using.


Implemented techniques

We must emphasize that until now there is a shortage of public data sets of breast cancer ultrasound images and it prevents the good performance of the algorithms. Because of this, the authors who made public the dataset we used, recommend augmenting data using GANs.

Our project developed GAN networks for each class in order to obtain more accurate results and 150 epochs were used.

However, it failed to create usable images, for this reason we declined the use of this technique. The challenge is to develop the GAN with a greater number of epochs and with a better neural network configuration to obtain more realistic images.

Fig. 2. MALIGNANT
Source: Compiled by authors using Matplotlib
Fig. 3. BENIGN
Source: Compiled by authors using Matplotlib
Fig.4. NORMAL
Source: Compiled by authors using Matplotlib


Network definition

Within the possible design patterns in Keras, subclassing has been implemented to use the low-level APIs of Keras. You can consult more information about this in the following article:

https://towardsdatascience.com/3-keras-design-patterns-every-ml-engineer-should-know-cae87618c7e3

The structure of the network consists of:

  • Preprocessing layer: Resizing, Rescaling and Normalization
  • Conv2D: 32 filters, 4 strides, ‘same’ padding and ReLU activation
  • MaxPooling2D: pool_size of (3,3), ‘same’ padding and 2 strides
  • Flatten
  • Dense: 512 neurons and ReLU activation
  • Dropout (0.4)
  • Dense: 3 neurons and SoftMax activation

We are based on AlexNet architecture, on which we made some adjustments like number of neurons, fully connected layers and dropout values.

We use Adam optimizer with learning rate of 0.0001, the Sparse Categorical Crossentropy loss function and Sparse Categorical Accuracy function.

Fig. 5. Model summary — Source: Compiled by authors


Training

TensorBoard was used to observe the real-time behavior of the accuracy and loss values, which provides useful graphs to analyze results and many controls for their manipulation.

Fig. 6. Dashboard TensorBoard — Source: Compiled by authors

Earlystopping

We use EarlyStopping as a form of regularization to avoid overfitting when training the model. For example, if the loss value stops decreasing, the training will stop even though all iterations have not been completed.


Conclusions and future works

WomanLife is intended to be an easy-to-access, low-cost medical diagnostic tool.

This AI is not only beneficial for women who use it but also has the potential to become a medical assistant. We want to clarify that WomanLife does not intend to replace medical specialists but to provide a tool that facilitates their work.

From now on we intend to optimize the model using a GAN network to obtain greater precision and use techniques that find the correct parameters for training the model (Hyperparameter tuning).

Our project also developed an application that, given an image scanned with the camera or selected from the gallery, goes through the developed network and returns a series of probabilities related to the type of cancer suffered.

The model was developed in pure TensorFlow, converted, saved and exported to TensorFlow Lite.

Fig. 7. Sample of the operation of the application prototype — Source: Own elaboration
Fig. 8. Conversion from TensorFlow to TensorFlow Lite architecture — Source: Own elaboration


Sources

You can access to notebook and mobile application through my GitHub repositories bellow:

https://github.com/edcalderin/BreastCancerDetection_CNN

https://github.com/edcalderin/BreastCancerDetection_app

Here, you will can find more projects related to Data Science and Machine Learning. In summary, it contains all my work so far. Any reply or comment is always welcome.


About the authors

Erick Calderin Morales

Systems engineer with experience in software development, master’s student in systems engineering and master’s degree in data science with an affinity for artificial intelligence.

Linkedin: https://www.linkedin.com/in/erick-calderin-5bb6963b/

Sharon Maygua Mendiola

Mechatronics engineering student with a degree in physics.

Linkedin: https://www.linkedin.com/in/sharon-sarai-maygua-mendiola-22288019a/

References

Saturdays.AI

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio se encuentra el código usuado para desarrollar esta aplicación:

https://github.com/SaturdaysAI/Projects/tree/master/Lapaz/2021.DL/BreastCancerDetection_CNN-master/BreastCancerDetection_CNN-master

WRITTEN BY

Erick Calderin

Systems Engineer passionated to Deep Learning and Artificial Inteligence

Saturdays.AI

¡Más inteligencia artificial!

Saturdays.AI is an impact-focused organization on a mission to empower diverse individuals to learn Artificial Intelligence in a collaborative and project-based way, beyond the conventional path of rogramas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

HUMANDS: INTELIGENCIA ARTIFICIAL PARA EMPLEADOS

Donostia. 2021

Inteligencia Artificial para empleados

Bilbao 2021. Pablo Martín García (pablo) y Omar Calderón (Omar Calderon). Las técnicas de inteligencia artificial aplicadas a empleados cubren una creciente necesidad dado lo costoso en tiempo y dinero que es conseguir buenos colaboradores para las empresas, además de eso la formación que tienen que darles para su buen desempeño dentro de la organización. Por ello, retener estos talentos se ha vuelto un gran reto y a la vez una necesidad, que no esta siendo nada fácil de enfrentar, las personas hoy en día ya no tienden a quedarse donde no están cómodas y no se sientan valoradas.

Las altas rotaciones de empleados se han vuelto normales en muchas empresas. Como ejemplo, en los sectores tecnológico y turístico, 75% de sus empleados a pesar de tener un puesto fijo, están en búsqueda activa de nuevas ofertas. Lo que representa un gran problema en términos de costes, ambiente laboral y eficiencia. Cuando se tiene un entorno laboral así, los otros empleados tienden a hacer lo mismo, ya que eso da sensación de inestabilidad y provoca atrasos en el trabajo.

Actualmente, uno de los problemas más graves a los que se enfrentan las empresas es la fuga de talento. Y, aunque esta migración de talento humano afecta a todas las empresas y todos los sectores, a día de hoy, en nuestro país, los sectores que se ven más perjudicados por este motivo son el tecnológico y el turístico. Según varias encuestas realizadas a lo largo de 2020, más del 75% de los empleados de estos sectores afirma que, a pesar de tener un puesto de trabajo, sigue buscando activamente otras ofertas de empleo, problema que intentaremos abordar con técnicas de inteligencia artificial.(https://interimgrouphr.com/blog/gestion-talento/fuga-talento-causas-soluciones/)

Actualmente en España 9 de cada 10 empleados no se sienten cómodos en su actual puesto de trabajo y esto hace que las organizaciones tengan que replantearse estrategias para mejorar las condiciones de sus colaboradores, pero los criterios para mejorar las mismas no deben ser elegidos por intuición, como se ha hecho toda la vida, lo que ha llevado a estos resultados actuales.

Uno de los motivos por los que las organizaciones pierden a sus empleados es la insatisfacción laboral. Por desgracia y según los datos que maneja Bizneo HR, casi 9 de cada 10 españoles son infelices en su puesto de trabajo. Y, ¿cuáles son las razones de este descontento? Entre otros, la imposibilidad de prosperar en la compañía y la dificultad para conciliar entre vida laboral y familiar. Principalmente.(https://www.bizneo.com/blog/como-evitar-la-fuga-de-talentos-en-tu-empresa/)


Objetivos:

  • Predecir el verdadero nivel de desgaste de los empleados dentro de una organización mediante Inteligencia Artificial.
  • Darle a la empresa la información necesaria y precisa para que realice los ajustes y cambios necesarios para reducir el desgaste y así reducir la fuga de talento.


Datos:

IBM HR Analytics Employee Attrition & Performance

Es un dataset de IBM en el cual recopilaron datos de 1470 de sus empleados ideal para aplicar técnicas de Inteligencia Artificial. En este dataset existen diferentes tipos de columnas, que van desde su edad, salario, satisfacción, etc.


Exploración de datos:

Vistazo a las primeras filas:

Descripción de columnas:

AGE: Valor numérco

ATTRITION: Empleado dejando la empresa (desgaste) (0=no, 1=yes)

BUSINESS TRAVEL: (1=No viaje, 2=Viaja frecuentemente, 3=Viaja ocacionalmente)

DAILY RATE: Valor numérico — Nivel salarial

DEPARTMENT: (1=RRHH, 2=I&D, 3=Ventas)

DISTANCE FROM HOME: Valor numérico — Distancia desde casa

EDUCATION: Valor numérico

EDUCATION FIELD: (1=RRHH, 2=Ciencias, 3=Marketing, 4=Ciencias Médicas, 5=Otros, 6=Técnico)

EMPLOYEE COUNT: Valor numérico

EMPLOYEE NUMBER: Valor numérico — ID del Empleado

ENVIROMENT SATISFACTION: Valor numérico — Satisfacción con el ambiente

GENDER: (1=Femenino, 2=Masculino)

HOURLY RATE: Valor numérico — Salario por hora

JOB INVOLVEMENT: Valor numérico — Involucramiento en el trabajo

JOB LEVEL: Valor numérico — Nivel de trabajo

JOB ROLE: (1=Recepción, 2=RRHH, 3=LAB Técnico, 4=Manager, 5= Director de Gerencia, 6= Director de Investigación, 7= Científico de Investigación, 8=Ejecutivo de Ventas, 9= Representante de Ventas)

JOB SATISFACTION: Valor numérico — Satisfacción con el Trabajo

MARITAL STATUS: (1=Divorciado, 2=Casado, 3=Soltero)

MONTHLY INCOME: Valor numérico — Salario Mensual

MONTHY RATE: Valor numérico — Ratio Mensual

NUMCOMPANIES WORKED: Valor numérico — Número de Empresas Trabajadas

OVER 18: (1=Si, 2=No)

OVERTIME: (1=No, 2=Si)

PERCENT SALARY HIKE: Valor numérico — Porcentaje de Incremento Salarial

PERFORMANCE RATING: Valor numérico — Ratio de Desempeño

RELATIONS SATISFACTION: Valor numérico — Satisfacción de Relaciones

STANDARD HOURS: Valor numérico — Horas Estándar

STOCK OPTIONS LEVEL: Valor numérico — Opciones de Participaciones

TOTAL WORKING YEARS: Valor numérico — Total de Años Trabajados

TRAINING TIMES LAST YEAR: Valor numérico — Horas de Entrenamiento

WORK LIFE BALANCE: Valor numérico — Equilibrio Vida Laboral — Personal

YEARS AT COMPANY: Valor numérico — Total de Años en la Empresa

YEARS IN CURRENT ROLE: Valor numérico — Años en el Puesto Actual

YEARS SINCE LAST PROMOTION: Valor numérico — Última Promoción

YEARS WITH CURRENT MANAGER: Valor numérico — Años con el Gerente Actual

No existen valores nulos en el dataset:

Matriz de correlaciones:

Matriz de correlaciones

Como podemos ver, dentro de la matriz, las variables que más correlacionas tienen entre sí son las variables relacionadas con tiempo, como la cantidad de años de experiencia, edad, etc. Entre sí y con variables como salario y nivel del puesto de trabajo.

jdjjdjddjd
Nivel de educación y edad
Años de experiencia y nivel de trabajo
Ratio de desempeño y subida de salario

En el siguiente plot podemos observar la evolución del desgaste de los empleados dentro de la organización, viendo desde el que tiene 40 años en la empresa (que es el más antiguo) hasta los que acaban de entrar que tienen 0 años.


Features engineering:

Vamos a trabajar profundamente con nuestra variable dependiente que en este caso sería Attrition. Esta variable es binaria, consta con dos valores que son YES y NO. Para lo que queremos hacer nosotros que es medir y predecir el verdadero nivel de desgaste de un empleado no nos sirve, esto debemos transformalo a probabilidades. Sabemos de algunos modelos de clasificación que se ajustan a nuestras necesacidades, pero vamos a hacer la comparación entre ellos a ver cual nos da mejor rendimiento con este tipo de datos.

RandomForestClassifier {0: {'train_time': 0.4280989170074463, 'pred_time': 0.05773425102233887, 'acc_train': 1.0, 'acc_test': 0.9271255060728745, 'f_train': 1.0, 'f_test': 0.923076923076923}}

AdaBoostClassifier {0: {'train_time': 0.36793017387390137, 'pred_time': 0.08242297172546387, 'acc_train': 0.9259634888438134, 'acc_test': 0.9109311740890689, 'f_train': 0.9255102040816326, 'f_test': 0.9083333333333333}}

GaussianNB {0: {'train_time': 0.008366107940673828, 'pred_time': 0.025140047073364258, 'acc_train': 0.8078093306288032, 'acc_test': 0.771255060728745, 'f_train': 0.8265446224256293, 'f_test': 0.7911275415896488}}

Basándonos en el resultado del accuracy_test, vamos a continuar trabajando con Random Forest Classifier, que además de haber tenido mejor rendimiento, consta con las características de Feature Importances Predict Proba.

Utilizando Feature Importances podemos apreciar cuales son las variables que según el modelo son las que más influyen en su predicción.

Feature Importances by Random Forest Classifier


Ampliación del dataset:

Yes 16%, No 84%

El dataset esta desbalanceado, 16% de los 1470 rows son para personas con desgaste (Attrition), para que el modelo de aún mejor predicciones y no este sesgado, vamos a ampliar el dataset utilizando el método SMOTE.

Shape of X before SMOTE: (1470, 51)
Shape of X after SMOTE: (2466, 51)

Balance of positive and negative classes (%):
No 50.0
Yes 50.0

Después de entrenar el modelo Random Forest Classifier con el dataset ampliado, vamos a ver cuales son sus predicciones en probabilidades para cada columna de nuestro dataset.

Va de 0 a 1, siendo 1 desgaste total
0       0.72
1 0.03
2 0.93
3 0.20
4 0.08
...
2461 0.99
2462 1.00
2463 0.99
2464 0.99
2465 0.95

Con la columna de Attrition transformada a probabilidades podemos ver con exactitud el desgaste en cada fila y asi medir con precisión que tanto afecta en el desgaste los cambios y ajustes que la empresa haga en las condiciones de sus empleados.


Cambios y ajustes que la empresa puede hacer para reducir el desgaste en sus empleados:

En esta parte estamos tomando en cuenta las variables en las cuales la empresa puede intervenir directamente, como salario, sobretiempos, etc. Las que son personales no, porque ya requeriría de consentimientos de terceros o gestiones más complejas.

Como primer experimento, hemos decidido medir como cambiaría el nivel de desgaste dentro de la empresa efectuando ajustes salariales de 10, 20, 30, 40, 50, 60, 70, 80 y 90%.

Para compartir los cambios en el nivel de desgaste a medida que se va aumentando el salario, hemos hecho los siguientes histogramas.

Incremento de 10% de Monthly Income
Incremento de 20% de Monthly Income
Incremento de 30% de Monthly Income
Incremento de 40% de Monthly Income
Incremento de 50% de Monthly Income
Incremento de 60% de Monthly Income
Incremento de 70% de Monthly Income
Incremento de 80% de Monthly Income
Incremento de 90% de Monthly Income

Hemos podido ver que la cantidad de personas sin desgaste aumenta, el punto es que aumenta muy poco para la gran inversión que esta haciendo la empresa, lo que en la práctica no sería factible.

Por eso hemos escogido otra forma de experimentar, en vez de trabajar con todos los empleados, vamos a trabajar de forma individual, con dos casos que tienen desgaste y dependiendo de su condición específica, vamos a realizar los ajustes necesarios.

Como primer candidato hemos tomado un row con Attrition alto y le hemos puesto candidate_1

candidate_1['Attrition']0.76

Hemos realizado unos cambios en algunos valores para ver como cambia su nivel de desgaste, hemos elegido MonthlyIncome y OverTime. En este caso hemos aumentado su salario mensual un 10% y le hemos quitado que tenga que hacer sobretiempos.

candidate_1['MonthlyIncome'] = candidate_1['MonthlyIncome'] * 1.1
2230.8candidate_1[‘OverTime_No’] = 1
candidate_1['OverTime_Yes'] = 0

Cambiando estos valores y pasandolo como input por el Random Forest Classifier, podemos ver la nueva probabilidad de Attrition que nos da.

prob_candidate_1 = clf.predict_proba(candidate_1)[:,1]0.47

Considerablemente ha bajado mucho su nivel de desgaste, haciéndolo ya estar en un nivel sano.

Realizaremos un segundo ejemplo, esta vez con un empleado que no esté haciendo horas extra.

Ejemplo con el candidato 2

candidate_2['Attrition']0.76             

Para este segundo ejemplo, hemos elegido MonthlyIncome y StockOptionLevel. En este caso hemos aumentado su salario mensual un 10% y le hemos dado una opción de participación de nivel 2 dentro de la empresa, para que se sienta partícipe.

candidate_2['MonthlyIncome'] = candidate_2['MonthlyIncome'] * 1.1
3256.00candidate_2['StockOptionLevel'] = 2

Cambiando estos valores y pasandolo como input por el Random Forest Classifier, podemos ver la nueva probabilidad de Attrition que nos da.

prob_candidate_2 = clf.predict_proba(candidate_2)[:,1]0.49

También ha dejado de estar en la zona de desgaste con estos ajustes que están dentro de las manos de la empresa.


Conclusiones

Trabajando este caso nos hemos dado cuenta que solamente predecir Si y No en el desgaste no es suficiente, ya que no se estaría midiendo que tan desgastada está una persona, ni las cosas que podrían cambiar su estado y en que medida.

Por eso hemos elegido abordar el proyecto de una forma más proactiva y que pueda ayudar a cambiar la situación de las personas antes de que sea tarde y también ayudar a tomar estas decisiones de forma informada.

Con esta forma de abordar el proyecto hemos validado nuestra hipótesis de que es si es posible combatir el desgaste y reducir la fuga de talento si se aplican los cambios necesarios y que estos mismos están dentro de las manos de la empresa. Dentro de lo que hemos podido ver en los resultados, el salario cambia un poco el nivel de desgaste, pero no es definitivo, hay que analizar la situación de cada colaborador de forma individual.

Los siguientes pasos serían medir de forma más eficiente cuales variables afectan en medida exacta a los empleados y volver a aplicar Inteligencia Artificial para obtener una predicción más precisa.

Aquí en repositorio del proyecto.

Gracias.Saturdays.AI

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esa aplicación: https://github.com/SaturdaysAI/Projects/tree/master/Donostia/Donostia2021/HUMANDS-master

¡Más Inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Detección de enfermedades cardiovasculares con HEALTHBOT.AI

Debido a la pandemia que actualmente estamos viviendo a nivel mundial, una de las problemáticas más inmediatas que se ha observado, es la falta de personal médico en hospitales en general y para atender a personas que sufran alguna otra enfermedad diferente al COVID-19. De acuerdo con esta información, el objetivo de este trabajo es realizar un chatbot que permita una fácil identificación temprana de enfermedades que han sido foco de defunciones a nivel mundial, así como poder ayudar con el seguimiento en los pacientes, de una manera mucho más accesible. Para primer prototipo y con la información que se tiene, se empezará a trabajar con la detección de enfermedades cardiovasculares. Como trabajos futuros, se pretende utilizar el sistema desarrollado, en alguna institución de salud pública, para detectar otras enfermedades que han sido las principales causas de muerte en México.

Contexto y problemática


De acuerdo con la información proporcionada por la OMS(Organización Mundial de la Salud), 7 de las 10 principales causas de muerte han sido por enfermedades no transmisibles. De las cuales se necesita prestar una mayor atención en las enfermedades cardiovasculares, el cáncer, la diabetes y las neumopatías crónicas, y de reducir los traumatismos.
Las enfermedades cardiovasculares han sido una de las principales causas de muerte en el mundo. Con las cifras obtenidas en el año 2012, hubo 17,5 millones defunciones registradas a nivel mundial. Más del 80% de las defunciones, afectan principalmente a los países bajos y medios, de igual manera en hombres como en mujeres. En México, el 77% de las muertes en adultos, se debe a enfermedades cardiovasculares, por lo cual está implicado los factores de riesgos como que el 17% de la población es fumadora, el 22.8% sufre de hipertensión y 1 de cada 3 adultos, son obesos. De los cuales, la obesidad ha sido uno de los principales factores de riesgo. Esto debido al gran consumo de azúcar, y la falta de educación sobre estos temas en el país.

Propuesta de Solución


Como propuesta para la prevención temprana de enfermedades, surge el proyecto HealthBot, el cual consiste en crear una interfaz (chatbot) con la cual el usuario interactúe inicialmente de manera textual para conocer su nivel de riesgo de padecer enfermedades cardiovasculares. Basado en este riesgo el chatbot emitirá una serie de recomendaciones para que el usuario tome las medidas de prevención o tratamiento adecuadas. Además, al recabar información sobre los factores de riesgo proporcionados por el usuario, la interfaz generará reportes clínicos que el usuario puede presentar a su médico durante la cita o ser enviado directamente desde la interfaz al personal de salud si esta está integrada a un sistema de una entidad de Salud como el IMSS.

Desarollo del proyecto


En el desarrollo del Chatbot se usarán modelos de Natural Language Processing (NLP) que permitan generar un diálogo enfocado a la población objetivo. A través del diálogo, el chatbot recopilará la información relevante para generar el diagnóstico. Una de las ventajas de este proyecto, es que la identificación de los factores de riesgo así como el modelo de diagnóstico se tomará del trabajo del equipo naranja de la generación anterior de Saturdays.AI., denominado CardioSight. Esto permite a nuestro equipo enfocarnos en el desarrollo de la interfaz basada en NLP y a la vez, promocionar y extender la funcionalidad de un trabajo previamente generado a traves de Saturdays.AI

Modelo de predicción de riesgo de enfermedades cardiovasculares


Para este proyecto tomaremos como referencia el modelo ya generado por el equipo naranja, de la generación anterior de Saturdays.AI. Este modelo toma encuenta 11 variables de entradas: edad, género, presión arterial sistólica, presión arterial diastólica, colesterol, glucosa, realiza actividad física, altura(cmts), peso(kgs) e índice de masa corporal. A continuación, se muestra la imagen de acuerdo con la correlación entre variables finales, después del análisis exploratorio de datos que previamente ha realizado el equipo naranja.


Figura 1. Resultado de la correlación de las variables antes mencionadas

Cardiovasculares

Descripción Técnica del Proyecto

Cardiovasculares

Créditos


La realización de este trabajo fue posible con el apoyo en todo momento, de nuestros mentores: Grisell Reyes Rios y Mario Fonseca. Los cuales siempre estuvieron guiando nuestro proceso para el término del proyecto.

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos de impacto social (#ai4good). Si quieres aprender más sobre este proyecto (y otros) únete a nuestra comunidad en o aprende a crear los tuyos en nuestro programa AI Saturdays.

Can AI boost tradition?

Tradition, from latin tradere, to transmit, is the act of sharing a behavior or belief from generation to generation. And as such, this heritage becomes part of our ourselves, our identity.

Innovation, in contrast, is the introduction of new ideas, of new ways or approaches that change how things were done before. This new approaches are often seen as a threat to tradition, as the adoption of new methods or behaviors tends to change the way that things were done, the tradition.

However, do things always need to be this way? Can innovation be used to leverage and spread tradition among society?

Donostia. 2021

Bertso, doinu and neurri a glimpse of the basque tradition

Among the various treasures basque culture has manged to keep alive are bertsoak, improvised verses with rhyme that are sung following a doinu, a melody, that has to match with certain neurri, or verse length.

This bertsos are typically sung in front of an audience, and, the bertsolaris, the basque rhyme singers, sing about different topics which are provided by the moderator, gaijartzaile, while they interact with the rest of bertsolaris (in a rather acid way) in pursue of the public’s applause.

How does this look like? Well lets take a look of how a modern bertso saio looks like lets take a look to the following video.

Deep Learning


Did you notice that the base used by both of the bertsolari is the same? This base is called doinu(a). Doinus are transmitted from generation to generation, and it is very important for bertsolaris to know them well, because they need to use the doinu suggested by the gaijartzaile (moderator) or the other bertsolaris to sing their bertsoz.

Can we improvise over the improvisation?

Bertsos are like rap, and rap battles happen on the fly, there is no script to follow. This means the abbility of the bertsolari to improvise becomes the cornerstone of the bertso. However, the base, the doinu, is already known by everyone, it is something fixed, rigid.

Which is a pity, isn’t it? If improvisation is part of the great art of the bertsolari… Why not provide an improvised doinu so that the bertso experience becomes even more challenging and unique?

With these thoughts in mind, and with the newly adquiered Deep Learning skillset, @jperezvisaires and @klopetx had an instant match in our mind. If there was anything that could create doinus by itself… that would be a Generative Adversarial Network.

Could bertsolarism be revolutionized with the use of AI?

Well… maybe not that much, but it was worth a try.

GANS where technology and tradition (could) meet

With the insightful courses we had during our SaturdayAI lessons, we learned about the latest innovations on the field of Deep Learning, such as the different architectures, (convolutional, recurrent, autoencoder…) as well as the different uses such as reinforcement learning and generative adversarial networks. The question at this point was, could the magic of generative adversarial networks be used to create new doinus? If so, what did we need for that purpose?

Data! Of course.

Gathering the data

Fortunately for us (and for the basque culture) there exists an entity, Bertsozale Elkartea, who has a webpage that includes all the known doinus, around 3000, with their meta-data included. It is in basque, but just in case you wanted to give it a look.

And well… you know what they say right?
It’s easier to ask for forgiveness than to get permission…
So… We scrapped the web (thank you bertsozale for your work, and sorry for overloading your servers and getting your data wihout formally asking permission).

First we downloaded the metadata of the doinus. We made a selection of the most used ones considering the number of syllables and type, and we donwloaded the ‘Zortziko/Txiki’ ones that had 7 syllables in the first berse followed by 6 in the second which decreased the list of doinus to around 200.

Midi format

«But wait a minute, donwload what exactly?»

Fortunately for us, we had the chance to download the doinus in either mp3 or midi formats.

«Midi? What’s that? I know about mp3 but midi reminds me of how french people names the mid day…»

MIDI (Musical Instrument Digital Interface) is a technological standard used to transfer up to 16 information channels. It transfers messages of events that include musical notation, tone and speed among other things. Basically, this files explain what notes are played, when, for how long and how loud.

Deep Learning

Example of a midi.

Feeding our little generative monster

Once the data was ready, we just needed to feed the GAN.

And our experience of using midi directly for the GAN is perfectly summarized by the following poem:

We used the midi as input
Well, at least we tried
we faced some problems
and hence, gave up.

You know, everyone uses Deep Learning with images, why should we do otherwise?

So, instead of using midis directly, we created images with them, cause, due to the nature of the midi files, it is quite simple to visualize/represent them as images.

Once at the more comfortable image domain it was easier to work with the problem, as there is much more content dealing with images and convolutional neural networks.

GAN structure

Let’s take a breath for a second. We started talking about how well GANs are supposed to work in the creation of new unheared soinus, but what are GANs exactly?

GANs were introduced by Goodfellow et. al. and are essentially two separate models that are trained together with an opposed purpose. One of the models, the generator, generates new data samples from a random seed; the second model, the discriminator, tries to tell whether the data is original (real) or if it was created by the generative model (fake). Due to their behavior, they are typicall compared to a counterfeiter and a cop. The counterfeiter keeps improving the quality of the works while the cop gets better at detecting which ones are real or faked.

Deep Learning

The structure of a GAN fed with doinus.

Basically, during the training process, the counterfeiter should get much better at creating new data (in this case images of new possible doinus) while the cop should improve at the detection of fake doinus, forcing the improvement of the counterfeiter. At some point, the generative model should be good enough at creating doinus that it would become absolutely impossible for the discriminative model to discern among real or fake doinus, meaning we have a model capable of creating good enough doinus.

Deep Learning

MiliaGAN, the generator part of the GAN.

Easy peasy lemon squeezy isn’t it?

SPOILER: Nothing went as expected.

Round 1: If what one has to say is not better than silence…

We started to feed our monster (well, monsters actually).
We waited until the training converged.
And we freaked out with the resulting doinus.

Deep Learning

Yep, this is not a mistakenly black image, its a “shy” midi with no notes.

Yes, an empty midi. Apparently our GAN was so smart that it preferred to remain silent instead of saying something worse than silence… It went full Simon & Garfunkel and published its own version of the Sound of Silence.

Why?

The images we were trying to create were really sparse, with lots of zeroes and only some ones on the notes being played. The generator initially learnt that by switching all the pixels off, it could trick the dumb discriminator at the beginning. However, during training, at some point, even the dumbest of discriminators was able to detect that a blank image was not a real doinu, which meant that all the efforts made by the generator to produce blank images from noise were now worthless. The generator was not able to adapt fast enough to trick the new discriminator and the training diverged.

To solve the problem of sparse images, we took the argmax of all the columns, esentially turning a 128×1024 image into a a 1×1024 vector. This was possible because the doinus only play one note at a time.

Lesson: Ensure you synthesize your data as much as possible, make life easy for your neural network.

Round 2: Damn it! Who cares about mixing different doinus?

Initially, we wanted the generator to focus on creating one type of doinu only; the most popular doinu: zortziko txikia. We only had about 180 usable samples of this kind of doinu, and it soon became apparent that training GANs requires a substantial amount of data just to get barely passable results. So instead of focusing on a small fraction of the doinus, we decided to take all the database in the end. This meant jumbling all kind of different doinus together, but got us a dataset of around 2700 samples; still really small for GAN training, but worth a shot.

Yeap, the whole database with the different neurris, rhymes etc.
Everything.
Goes.
In.

In addition, we reduced the resolution of the images so that they were less sparse, in order to avoid the problem of the shy gan.

And we reduced the midi resolution even more. We needed to simplify if we wanted to make some kind of progress.

And, surprisingly, the magic happened.


Lessons learned

So, what have we learned after the creation of our little monster, the MiliaGAN?

  • The amount of data needed to properly train a GAN is a lot more than we had available, bigger datasets give better results in this kind of networks. Few-shot learning in GANs is a key point being worked on in the academic community right now.
  • Time is key in training GANs, if the training is stable and there aren’t any divergences, the results keep improving with training time, sometimes getting pretty good results as the training goes on.
  • Simplify the data to be generated and fed to the neural networks as much as possible. Make life easier for your neural networks. Sparse matrices are the devil and should be condensed into a vector if possible, as neural networks love to give outputs full of zeroes if this are available to them.

Final remarks

The MiliaGAN project has been a great chance to learn DeepLearning techniques, and Generative Adversarial Networks in particular. It has only been possible thanks to the help from the AI Saturdays crew, who have created an ideal environment to learn about AI, boost the creation of a great community and the development of new projects and ideas. And, of course, to the rest of Fellows, that have helped and shared their thoughts. We are very grateful to all of you for making MiliaGAN possible. Thank you for creating this great community!

On the personal side, this project has been both challenging and a great source of fun. It combines two key aspects of our identity, our culture and our geekness. It is, additionally, the first time that  Jon and Kerman join forces in a crazy technological project (not first time for crazy projects, but this is not the place for this discussion).

Will MiliaGAN revolutionize the world of bertsolarism? We frankly doubt it, but hey, if someone ever asks, we had fun and we learned.

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos de impacto social (#ai4good). Si quieres aprender más sobre este proyecto (y otros) únete a nuestra comunidad en o aprende a crear los tuyos en nuestro programa AI Saturdays.

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

facturas

Detección de datos de facturas manuales

La Paz. Deep Learning. 2021

Introducción

La declaración de facturas es uno de los deberes que tienen un porcentaje de la población boliviana, ya sean contribuyentes dependientes o independientes. Si bien es posible importar los datos de una factura electrónica por medio del escaneo de un código QR. El realizar dicha transcripción de una factura manual llega a ser más complicado, lento y moroso, a la hora de transcribir el número de NIT, el número de autorización y el número de factura de cada una. Especialmente para personas que no son muy familiarizadas con sistemas computacionales, siendo este una parte importante de la población adulta en Bolivia.

facturas

Figura 1. Imágenes de una Factura Manual

facturas

Figura 2. Imágenes de una Factura Manual y una Factura Digital

Es por ello, que el presente proyecto es un prototipo de un sistema de reconocimiento óptico de caracteres que identifique los valores previamente mencionados. Y por consiguiente permita al usuario exportar dicha información en un archivo CSV o XLSX, para su fácil importación en la plataforma de declaración de facturas SIAT (Sistema Integrado de Administración Tributaria).

Figura 3. Pantalla principal de la plataforma SIAT, para la importación de datos de facturación.

Figura 4. Botón de importación de archivos xls o xlsx.

Descripción del problema

El problema identificado es la cantidad de tiempo que se invierte a la hora de transcribir la información de cada una de las facturas manuales; tanto a personas con tiempo limitado por múltiples actividades personales o profesionales, como a personas con poca habilidad computacional.

Objetivo

El proyecto busca facilitar la detección de los datos más largos de facturas manuales, siendo estos el número de NIT de la empresa, el número de autorización, y el número de factura. Para su posterior exportación en formatos CSV o XLSX para su posterior importación en la página de Mis Facturas del SIAT (Sistema Integrado de Administración Tributaria).

Selección del modelo

CRAFT

Se utiliza CRAFT (Character-Region Awareness For Text detection) [1], esto debido a que nos permite localizar las regiones de caracteres individuales y vincular los caracteres detectados a una instancia de texto. Se podría haber utilizado Tesseract el cual es un módulo de ORC pero falla en textos con curvas y formas irregulares en ciertos tipos de fuentes.

CRAFT

Figura 5. Ilustración esquemática de la Arquitectura del modelo CRAFT

La arquitectura se basa en la red neuronal convolucional CNN, VGG-16 [2], es esencialmente para la extracción de características que se utiliza para codificar la entrada de la red en una determinada representación de características y el segmento de decodificación de la red CRAFT.

Figura 6. Modelo de la CNN VGG-16.

Técnicas implementadas

Las técnicas implementadas por el modelo CRAFT son las básicas para la detección de caracteres, como ser: cortes, rotaciones y/o también variaciones de colores.

Figura 7. Procedimiento de división de caracteres para lograr anotaciones a nivel de caracteres a partir de anotaciones a nivel de palabra: 1) Se recorta la imagen a nivel de palabra; 2) Se predice la puntuación de la región; 3) Se aplica el algoritmo watershed; 4) Se obtienen los cuadros delimitadores de caracteres; 5) Se desempaquetan los cuadros delimitadores de caracteres.

Evaluación de modelos

Al ser un modelo pre-entrenado de KERAS-OCR, con el modelo de CRAFT [3]. Podemos ver su eficacia con respecto a otros modelos similares para la detección de caracteres:

.

Figura 8. Comparativa de diferentes modelos, donde se utilizaron los dataset ICDAR y MSRA-TD500. Dónde: P es la Precisión, R es Recall, H es la H-mean y FPS los cuadros analizados por segundo [4].

Análisis de resultados

Una vez importada la imagen de la factura, se obtienen todos los valores que son detectados en la misma. Por lo que cortamos la imagen en dos, para tener solamente la parte derecha; donde se encuentran los datos que intentamos recopilar. Ya que como se ve en la Figura 9, la cantidad de datos es excesiva.

Figura 9. Detección de caracteres de una factura manual.

Una vez tenemos todos los datos detectados y convertidos en tipo STRING, en un dataframe creado con Pandas. Comparamos cada una de las columnas, buscando el texto deseado. Por tal motivo, comparamos la cantidad de caracteres que tiene el NIT del proveedor (de 8 a 10 caracteres), el Número de autorización (14 a 16 caracteres) y el Número de factura (4 a 6 caracteres). Por lo que, hallamos tras la búsqueda de columnas el valor deseado.

Figura 10. Detección de valores deseados, transformación a un dataframe con Pandas y conversión de los datos a STRING para su posterior comparación.

Finalmente, guardamos estos valores en un dataframe creado, con la misma distribución que pide el sistema de mis facturas de la plataforma SIAT. Y exportamos en CSV, o XLSX. Y como se ve en la figura 11.

Figura 11. Exportación de datos generados a los archivos CSV y XLSX.

Conclusión

Por medio de este prototipo, se puede identificar los valores más relevantes y complicados de transcribir para la mayoría de las personas que realizan su declaración de facturas. Además, que el importarlos desde una foto o imagen escaneada reduce drásticamente el tiempo de transcripción de datos. Lo que sería de mucha ayuda para personas no muy familiarizadas con las computadoras, como un buen porcentaje de adultos mayores en el país.

Si bien, muchos datos son identificados. El mayor problema reside en la calidad de la imagen tomada, ya que si esta no tiene una buena nitidez o tamaño llega a tener problemas con la identificación de algunos caracteres. Y que para trabajos futuros se podría intentar solventar con un entrenamiento más personalizado y no basándose en uno pre entrenado.

A su vez, el realizar una GUI (Interfaz gráfica de usuario), ayudaría bastante en poder llevar a este prototipo a ser más amigable con el usuario. Y por ende, facilita la importación de imágenes o facturas escaneadas para su reconocimiento de caracteres y exportación final.

Código

https://github.com/albmarale/SaturdaysAIDeepLearning

Bibliografía

[1] “PyTorch: Scene Text Detection and Recognition by CRAFT and a Four-Stage Network | by Nikita Saxena | Towards Data Science.” https://towardsdatascience.com/pytorch-scene-text-detection-and-recognition-by-craft-and-a-four-stage-network-ec814d39db05 (accessed Jul. 13, 2021).

[2] M. ul Hassan, “VGG16-Convolutional Network for Classification and Detection,” en l{\’\i}nea].[consulta 10 abril 2019]. Dispon. en https//neurohive. io/en/popular-networks/vgg16, 2018.

[3] F. Morales, “keras-ocr — keras_ocr documentation,” 2021, Accessed: 13-Jul-2021. [Online]. Available: https://keras-ocr.readthedocs.io/en/latest/.

[4] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region awareness for text detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9365–9374.

Este proyecto fue elaborado por:

  • Albert Martínez Alegría
  • Alvaro Alanoca Huaycho
  • Belinda Alcón Sullcani
  • Rodrigo Aliaga

Para el programa Saturdays.AI La Paz.

Presentación del proyecto: DemoDay

Repositorio

En el siguiente repositorio se encuentra el código usado para desarrollar esa aplicación: https://github.com/SaturdaysAI/Projects/tree/master/Lapaz/2021.DL/Deteccion-facturas-manuales-main

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos de impacto social (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más sobre este proyecto (y otros) únete a nuestra comunidad en o aprende a crear los tuyos en nuestro programa AI Saturdays.

PCR test

Detección de COVID-19 en imágenes de rayos X con Machine learning

La Paz. Deep Learning. 2021

INTRODUCCIÓN

La COVID-19 es la enfermedad causada por el nuevo coronavirus conocido como SARS-CoV-2. La OMS tuvo noticia por primera vez de la existencia de este nuevo virus el 31 de diciembre de 2019, al ser informada de un grupo de casos de «neumonía vírica» que se habían declarado en Wuhan (República Popular China).

Se llama SARS-CoV-2, por las siglas:

  • “SARS” porque puede producir un “Síndrome Respiratorio Agudo Grave” (siglas en inglés: Severe Acute Respiratory Syndrome, SARS).
  • “CoV” porque es un coronavirus.
  • “2” porque ya existió un virus parecido en 2002–2003 que producía también SARS.

 

¿QUÉ PRUEBAS SE UTILIZAN PARA DIAGNOSTICAR EL COVID-19?

PCR

Las PCR (siglas en inglés de “Reacción en Cadena de la Polimersa”), son un tipo de pruebas de diagnóstico que se llevan utilizando durante años en diferentes crisis de salud pública relacionadas con enfermedades infecciosas. Estas pruebas se están usando desde los primeros días del estallido de la pandemia de coronavirus en España. Sin embargo, los test rápidos se han incorporado recientemente y, como su nombre indica, son más rápidos y sencillos. Ambos sirven para comprobar si una persona está infectada o no por el Covid-19.

PCR test
ANTÍGENO

Prueba de antígeno. Esta prueba para la COVID-19 detecta ciertas proteínas en el virus. Se usa un hisopo para tomar una muestra de fluido de la nariz, y las pruebas de antígeno pueden dar resultados en minutos.

Test antígeno
RADIOGRAFIA DE TORAX

Los escáneres o las radiografías producen una imagen de los órganos y estructuras (corazón, pulmones y vías respiratorias) del tórax. Pueden detectar bloqueos, inflamación y exceso de líquido.

  • Las radiografías utilizan una pequeña cantidad de radiación para producir una imagen en dos dimensiones. Por lo general, las realiza un radiólogo en el hospital mediante un equipo fijo, pero también se pueden hacer con una máquina portátil.
  • La tomografía computarizada (TC) utiliza una computadora para fusionar varias radiografías tomadas desde diferentes ángulos y producir así una imagen bidimensional que se puede convertir en una imagen tridimensional. Requiere de un equipo muy especializado y la realiza en el hospital un radiólogo especialista.

Se pueden realizar en un hospital o en otros centros sanitarios, como la consulta de un médico o una clínica.

PROBLEMATICA

Dado que hay kits de prueba de COVID-19 son de acceso limitado para la población en general, debemos confiar en otras medidas de diagnóstico.

IMÁGENES DE RAYOS X

En el campo de la medicina se utilizan con frecuencia radiografías y tomografías computarizadas para diagnosticar neumonía, inflamación pulmonar, abscesos y / o ganglios linfáticos agrandados. Dado que COVID-19 ataca las células epiteliales que recubren nuestro tracto respiratorio, podemos usar rayos X para analizar la salud de los pulmones de un paciente.

Una gran mayoría de los hospitales tienen máquinas de imágenes de rayos X, se plantea la siguiente pregunta: ¿Cómo se podría detectar COVID-19 en imágenes de rayos X?, sin los kits de prueba dedicados.

OBJETIVOS

  • Recopilar las entradas del modelo en datasets para el entrenamiento, pruebas y validación.
  • Desarrollar un modelo de diagnóstico del covid a través de imágenes de rayos X usando deep learning, con un porcentaje de confiabilidad aceptable.
  • Evaluar los resultados del modelo a través de la matriz de confusión.

DESARROLLO DEL MODELO

Para el desarrollo del modelo se ha utilizado un dataset del repositorio de kaggle que tiene un total de 5.856 imágenes, se ha usado radiografías de pacientes que tenían neumonía porque estos pacientes tienen una alta probabilidad de tener covid-19.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

SELECCION DEL MODELO Y TECNICAS IMPLEMENTADAS

Para la construcción del modelo se utilizó Redes Neuronales Convolucionales, porque son redes neuronales diseñadas y ampliamente usadas para trabajar con imágenes.

Las redes convolucionales contienen varias hidden layers, las cuales se encargan de detectar líneas, curvas y así con las convoluciones se permitirá detectar formas más complejas como siluetas, rostros, etc.

Las herramientas utilizadas son: Tensorflow y keras. Tensorflow es una plataforma de código abierto usada para aprendizaje automático compuesta por un conjunto de herramientas, librerías y recursos que facilitan el trabajo en el desarrollo e implementación de soluciones con inteligencia artificial (IA). Keras es una librería, actualmente es API de alto nivel que proporcionan interfaces que simplifican el trabajo en el desarrollo de aplicaciones con IA, a partir de la versión 2.0 keras ya viene integrada dentro de Tensorflow.

DESARROLLO DEL PROYECTO

Debido a que es una pequeña prueba de concepto de clasificación de imágenes para un curso introductorio a Deep Learning, se ha subido las imágenes del dataset a una carpeta de google drive y el desarrollo del modelo se utilizó los servicios de colab.research de Google.

Las imágenes fueron ajustadas a un tamaño de 500×500, para poder entrenar, en la siguiente imagen se observa una radiografía de un paciente normal.

Modelo

Con la integración de Keras con Tensorflow, se tienen nuevas clases como “ImageDataGenerator” que facilitan la carga de imágenes:

Las imágenes fueron divididas en 3 grupos: entrenamiento, pruebas y validación.

El modelo de clasificación se puede observar en la siguiente gráfica:

EVALUACION DEL MODELO

Para realizar la evaluación se ha utilizado la matriz de confusión:

Donde se puede observar que el modelo ha identificado:

  • Para personas que estaban sanas y que el modelo predijo como personas sanas fueron 175 casos de verdaderos negativos (VN).
  • Para personas que estaban enfermas y que el modelo predijo como personas enfermas fueron 384 casos de verdaderos positivos (VP).
  • Para personas que estaban enfermas y que el modelo predijo como personas sanas fueron 59 casos de falsos negativos (FN).
  • Para personas que estaban sanas y que el modelo predijo como personas enfermas fueron 6 casos de falsos positivos (FP).

Con estos datos podemos calcular los siguientes indicadores:

Exactitud = (VP + VN) / (VP + VN + FN + FP)

Exactitud = (175 + 384) / (175 + 384 + 59 + 6)

Exactitud = 0,8958

La exactitud es la cantidad de predicciones que fueron positivas que fueron correctas y se llegó a un valor de 89,58%

Precisión = VP / (VP + FP)

Precisión = 384 / (384 + 6)

Precisión = 0,9846

La precisión es el porcentaje de casos positivos detectados llegó a un valor de 98,46%

Sensibilidad = VP / (VP + FN)

Sensibilidad = 384 / (384 + 59)

Sensibilidad = 0,8668

La sensibilidad es la proporción de casos positivos correctamente identificados llegó a un valor de 86,68%

Especificidad = VN / (VN + FN)

Especificidad = 175 / (175 + 59)

Especificidad = 0,7478

La especificidad trata de la cantidad de casos negativos correctamente identificados llegó a un valor de 74,78%.

ANALISIS DE RESULTADOS

Del proceso de desarrollo del modelo, de acuerdo a las librerías de Keras y Tensorflow pudimos llegar a una precisión del 89,59 %.

Con los resultados obtenidos podemos observar en la figura que el valor de la precisión se mantuvo por encima del 80%, el valor de la pérdida fue inferior al 20 %.

machine learning results

Presentación del proyecto: DemoDay

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos de impacto social (#ai4good). Si quieres aprender más sobre este proyecto (y otros) únete a nuestra comunidad en o aprende a crear los tuyos en nuestro programa AI Saturdays.

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

WRITTEN BY

res.txt machine learning

res.txt: Resumen y traducción de texto con Machine Learning

res.txt machine learning

La Paz. 2021

Introducción

El resumen de texto es el proceso de extraer la información más importante de un texto fuente para producir una versión abreviada para un usuario. Los seres humanos llevamos a cabo la tarea de resumen, ya que tenemos la capacidad de comprender el significado de un documento y extraer características destacadas para resumir los documentos utilizando nuestras propias palabras. Sin embargo, los métodos automáticos para el resumen de texto son cruciales en el mundo actual, donde hay falta de trabajadores y de tiempo para interpretar los datos.

Figura 1:  Cantidad de datos generados de manera anual

Problema

internet languages

Figura 2: Idiomas predominantes en internet

Hoy en día, con el constante crecimiento de la información el estar actualizados en cualquier tema es una necesidad. Pero las fuentes de información usualmente son extensas y poseen una gran cantidad de texto pero lo más importante es que la información está en inglés.

Objetivo

Desarrollar una aplicación que pueda ayudar a la comprensión de un documento de texto en inglés y acorte el tiempo de comprensión de un texto largo.

Solución propuesta

Hacer la aplicación en base a métodos de DeepLearning enfocados a attention mechanism. Estas técnicas imitan la atención cognitiva. Esto provoca la mejora en las partes más importantes de los datos de entrada y desvanece el resto.

Dataset

CNN Daily Mail es un conjunto de datos de más de 300 mil artículos en inglés escritos por periodistas en CNN y en Daily Mail. El tamaño del conjunto de datos es de 1.27 GiB en la versión actual, esta admite el resumen extractivo y abstracto, aunque la versión original se creó para la lectura y comprensión automática y la respuesta a preguntas abstractas. Los datos se pueden usar para entrenar un modelo para el resumen abstracto y extractivo

Modelo de DL

Figura 3: Esquema BART

BART es una arquitectura que se basa tanto en BERT y GPT, BART utiliza la arquitectura de transformer seq2seq estándar pero, después de GPT, que modificamos las funciones de activación de ReLU a GeLU. La arquitectura está estrechamente relacionada con BERT, con las siguientes diferencias:

  1. Cada capa del decodificador, además, realiza una atención cruzada sobre la capa oculta final del codificador (como en el modelo de secuencia a secuencia del transformador)
  2. BERT utiliza una feed-forward network antes de la predicción de palabras, lo que BART no hace.

Entonces en pocas palabras usa la comprensión de texto o input de BERT y GPT para el output o la generación de palabras.

Para trabajar con este modelo se lo hizo mediante el modelo base que nos provee HuggingFace.

HuggingFace es una plataforma Open Source que se enfoca en NLP, nos ayuda a construir, entrenar e implementar modelos que son estado del arte. En este caso nos ayudó a construir el modelo y con el dataset.

Entrenamiento del modelo

El proyecto fue realizado en base a los modelos provistos por la página de Hugging Face, la cual posee una gran colección tanto de modelos como de datasets para tareas de NLP (Procesamiento de Lenguaje Natural). De todas las opciones se seleccionó el modelo de sumarización abstractiva BART.

El código hace uso de las librerías “datasets” y “transformers” de HuggingFace, además de nltk para realizar la evaluación.

# Imported libraries
from datasets import load_dataset, load_metric
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
import nltk
import numpy as np
from transformers import pipeline

Para realizar el fine tuning se hizo uso del dataset “cnn_dailymail”, para la evaluación se utilizó la métrica “rouge”, y el modelo base que se usó fue “facebook/bart-base”.

raw_datasets = load_dataset(“cnn_dailymail”, “3.0.0”)
metric = load_metric(“rouge”)
model_checkpoint = “facebook/bart-base”

Se cargaron un tokenizer y un modelo haciendo referencia al modelo base seleccionado.

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)

Del dataset “cnn_dailymail” se extrajeron los elementos que se encuentran bajo las etiquetas de “article” y “highlights” como datos de entrada y salida respectivamente.

max_input_length = 512
max_target_length = 128
def preprocess_function(examples):
inputs = [doc for doc in examples[“article”]] model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(examples[“highlights”], max_length=max_target_length,
truncation=True)
model_inputs[“labels”] = labels[“input_ids”] return model_inputstokenized_datasets = raw_datasets.map(preprocess_function, batched=True)

Antes de entrenar el modelo se realiza la configuración de hiperparámetros.

batch_size = 4
args = Seq2SeqTrainingArguments(
“BART_Finetuned_CNN_dailymail”,
evaluation_strategy = “epoch”,
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
gradient_accumulation_steps=2,
weight_decay=0.01,
save_total_limit=2,
num_train_epochs=1,
predict_with_generate=True,
fp16=True,
)

Se crea una función para realizar el cómputo de métricas haciendo uso de rouge score.

def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can’t decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

# Rouge expects a newline after each sentence
decoded_preds = [“\n”.join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]decoded_labels = [“\n”.join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]

result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}

# Add mean generated length
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]result[“gen_len”] = np.mean(prediction_lens)

return {k: round(v, 4) for k, v in result.items()}

Una vez inicializado el modelo, definidos los hiperparámetros, datasets, tokenizer y métricas creamos un Trainer.

trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets[“train”],
eval_dataset=tokenized_datasets[“validation”],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)

Descargamos punkt tokenizer que nos permite transformar un texto por oraciones.

nltk.download(‘punkt’)

Finalmente realizamos el entrenamiento y la evaluación

trainer.train()trainer.evaluate()

Resultados

Figura 4: Pérdida a lo largo del entrenamiento

Una vez finalizada la fase de entrenamiento podemos observar la pérdida a lo largo del entrenamiento realizado en el dataset “train”.

Si bien se muestran buenos resultados, se pueden mejorar haciendo mejor sintonización y tiempos de entrenamiento con el modelo.

Los resultados obtenidos al evaluar el modelo entrenado con la métrica rouge score fueron los siguientes:

eval_loss: 1.5510817766189575

eval_rouge1: 46.8771

eval_rouge2: 23.5647

eval_rougeL: 39.6525

eval_rougeLsum: 43.3625

eval_gen_len: 17.8154

Conclusiones

Se logró realizar una aplicación que resume y traduce el texto dado, se vio que los resultados obtenidos son óptimos para la tarea.

Se usó dos modelos para hacer la aplicación, el primer modelo es el que se entrenó de resumen este modelo ya esta en huggingface , para la parte de traducción se usó un modelo ya entrenado de huggingface. (https://huggingface.co/Helsinki-NLP/opus-mt-en-es).

Trabajo Futuro

Mejorar los tiempos de inferencia que tienen los modelos al usar servicios en la nube.

Expandir los tipos de entradas que pueda tener, puesto que ahora solo soporta texto puro. (txt, docx)

Integrantes

Sergio Flores. — www.linkedin.com/in/sergio-flores-ll

Anna Montevilla. — www.linkedin.com/in/anna-i-montevilla

Koichi Sato. — www.linkedin.com/in/koichi-sato-316902182

Josmar Suarez. — www.linkedin.com/in/josmar-suarez-l

Referencias

https://arxiv.org/abs/1910.13461v1

https://huggingface.co/datasets/cnn_dailymail

https://huggingface.co/transformers/model_doc/bart.html

https://arxiv.org/abs/1810.04805

https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) a la vez que se realizan proyectos para el bien (#ai4good). Los talleres que realizamos forman parte del programa AI 4 Schools para que cualquier persona “aprenda haciendo” IA sin importar su especialidad o nivel de partida.

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en este link o visítanos en nuestra web www.saturdays.ai ¡te esperamos!

WRITTEN BY

Detección de fatiga en conductores de vehículos mediante Inteligencia Artificial

La Paz. Deep Learning. 2021

Las herramientas de visión artificial han demostrado vez tras vez el gran potencial que posee en sus distintas áreas de aplicación. Una de estas está justamente relacionada con los vehículos y sus conductores. Abarcando desde movilidades autónomas hasta herramientas de uso personal el espectro es muy amplio. Por ello, en este texto se explica la implementación de un detector de fatiga en conductores mediante Inteligencia Artificial utilizando OpenCV y Dlib.

DESCRIPCIÓN DEL PROBLEMA

Los accidentes de tránsito son una de las principales causas de muerte en ciudadanos de todos los países. Estos se pueden clasificar de acuerdo a sus causas. Se calcula que entre un 20% y un 30% de los accidentes se deben a conductores que conducen con fatiga. Si bien la fatiga al conducir es un riesgo evitable, lastimosamente, muchos conductores no toman las precauciones necesarias cuando conducen por periodos prolongados de tiempo. Por lo tanto, los conductores con fatiga pueden beneficiarse de un sistema de Inteligencia Artificial que los alerte al momento de perder la atención.

OBJETIVO

Diseñar un sistema para detectar la fatiga en conductores.

SELECCIÓN DEL MODELO

Se seleccionó un modelo de visión artificial pre entrenado basado en la librería cv2 de OpenCV y dlib para detección facial.

TÉCNICAS IMPLEMENTADAS

  • OpenCV: La biblioteca libre de visión artificial que se está usando para obtener la imagen del conductor.
  • Dlib face landmarks: Son 68 puntos que se colocan sobre el rostro detectado para la identificación de facciones faciales, en este caso los ojos.
  • NumPy: Esta biblioteca se está usando para el cálculo de la proporción de abertura de los ojos, mediante álgebra lineal y el posicionamiento de los puntos faciales de los ojos.

EVALUACIÓN DE MODELOS

El sistema construido hace uso de un modelo pre entrenado de detección facial. Con ayuda de las bibliotecas previamente mencionadas se realiza un procedimiento como sigue:

  1. Se carga el modelo detector y predictor que son los que detectan el rostro del conductor así como los 68 puntos faciales.
  2. Una función lineal detecta la proporción de aspecto en los ojos midiendo distancias entre los puntos oculares.
  3. Según el valor que se obtenga en esta proporción el programa se ramifica según el estado que considere correspondiente (despierto, cansado o dormido). Para que se considere la transición de un estado a otro debe haber una permanencia en ese estado durante un periodo de tiempo.
  4. El sistema indica en pantalla el estado identificado, este es el paso donde podría activarse o no una alarma.
  5. Este procedimiento se realiza fotograma a fotograma para tener una predicción constante del estado de fatiga de la persona.

ANÁLISIS DE RESULTADOS

Como se utilizó un modelo pre entrenado los resultados obtenidos por el detector facial y de los puntos de referencia del rostro son buenos.

Sin embargo, los resultados que obtuvimos en la detección del estado de fatiga son más bien fluctuantes. En ocasiones el sistema es poco sensible y no detecta estados con los ojos cerrados o, por el contrario, el sistema es pronto para indicar un estado posiblemente falso. Las razones que podrían causar este problema incluyen la calidad del video y el enfoque exclusivo en los ojos del conductor (cuando podrían tomarse en consideración otros factores como la boca).

CONCLUSIÓN

El proyecto ha desarrollado un sistema funcional capaz de detectar la fatiga en conductores de vehículos. La consistencia en estas detecciones no es buena así que se proponen algunas sugerencias: Aplicar operaciones de erosión y dilatación para reducir el ruido en la captura de video, implementar un sistema que detecte la proporción de abertura de la boca para aumentar la consistencia, y modificar los umbrales de detección para ajustarse a las necesidades de cada conductor.

INTEGRANTES

Carlos Claure –https://www.linkedin.com/in/carlos-manuel-claure-vargas-475226212

Raquel Calle –https://www.linkedin.com/in/raquel-veranda-calle-zapata-460226212

Liders Limpias –https://www.linkedin.com/in/limpiaslider/

Alejandro Carrasco. –https://www.linkedin.com/in/miguel-alejandro-carrasco-c%C3%A9spedes-785717215/

REFERENCIAS

Presentación del proyecto: DemoDay

¡Más inteligencia artificial!

La misión de Saturdays.ai es hacer la inteligencia artificial más accesible (#ai4all) mediante cursos y programas intensivos donde se realizan proyectos para el bien (#ai4good).

Infórmate de nuestro master sobre inteligencia artifical en https://saturdays.ai/master-ia-online/

Si quieres aprender más inteligencia artificial únete a nuestra comunidad en community.saturdays.ai o visítanos en nuestra web www.saturdays.ai ¡te esperamos!Saturdays.AI

Raquel Calle

WRITTEN BY

Raquel Calle

Saturdays.AI

Saturdays.AI

Saturdays.AI is an impact-focused organization on a mission to empower diverse individuals to learn Artificial Intelligence in a collaborative and project-based way, beyond the conventional path of traditional education.